S. Aldridge et al. / Journal of Organometallic Chemistry 649 (2002) 9–14
13
spectrum displays
a
peak at m/z=259 [(h5-
Acknowledgements
C5H5)Fe(CO)2BCl+2 ], and the measured carbonyl
stretching frequencies [2022 and 1963 cm−1] are consis-
tent with the attachment at the iron centre of a moder-
ately p acidic boryl ligand such as BCl2. On addition of
one equivalent of dilithiocatechol, the signal at lB 90.7
is converted over a period of 20 min into a single
resonance at lB 51.0 characteristic of (h5-
C5H5)Fe(CO)2BO2C6H4 (4) [6]. The identity of the final
isolated product was confirmed by comparison of the
measured spectroscopic data with that originally re-
ported by Hartwig and Huber [6].
We would like to acknowledge the support of the
EPSRC, the Royal Society, the Nuffield Foundation
and Cardiff University for the funding of this project.
The assistance of the EPSRC National Mass Spec-
trometry Service Centre, University of Wales Swansea
is also gratefully acknowledged.
References
This reaction represents a rare example of substitu-
tion at X within a boryl (BX2) ligand, with retention of
the metal boron bond. This type of reactivity occurs
almost exclusively for BCl2 complexes (in which the
stabilization of the boron centre by p electron release is
relatively poor), and has also been reported by Roper
and Wright for osmium BCl2 derivatives [2,15]. Similar
chemistry has also been reported by Braunschweig for
bridging borylene complexes containing the BCl ligand
[33]. Attempts to develop the scope of this substitution
chemistry in the synthesis of novel iron boryl complexes
are ongoing.
[1] H. Wadepohl, Angew. Chem. Int. Ed. Engl. 36 (1997) 2441.
[2] G.J. Irvine, M.J.G. Lesley, T.B. Marder, N.C. Norman, C.R.
Rice, E.G. Robins, W.R. Roper, G. Whittell, L.J. Wright, Chem.
Rev. 98 (1998) 2685.
[3] H. Braunschweig, Angew. Chem. Int. Ed. Engl. 37 (1998) 1787.
[4] M.R. Smith, Prog. Inorg. Chem. 48 (1999) 505.
[5] See, for example: (a) H.C. Brown, B. Singaram, Pure Appl.
Chem. 59 (1987) 879;
(b) K. Burgess, M.J. Ohlmeyer, Chem. Rev. 91 (1991) 1179;
(c) C.N. Iverson, M.R. Smith, Organometallics 15 (1996) 5155;
(d) I. Beletskaya, A. Pelter, Tetrahedron 53 (1997) 4957.
[6] (a) J.F. Hartwig, S. Huber, J. Am. Chem. Soc. 115 (1993) 4908;
(b) K.M. Waltz, J.F. Hartwig, Organometallics 18 (1999) 3383.
[7] K.M. Waltz, X. He, C. Muhoro, J.F. Hartwig, J. Am. Chem.
Soc. 117 (1995) 11357.
[8] K.M. Waltz, J.F. Hartwig, Science 277 (1997) 211.
[9] H. Chen, J.F. Hartwig, Angew. Chem. Int. Ed. Engl. 38 (1999)
3391.
4. Conclusions
[10] H. Chen, S. Schlecht, T.C. Semple, J.F. Hartwig, Science 287
(2000) 1995.
[11] K.M. Waltz, J.F. Hartwig, J. Am. Chem. Soc. 122 (2000) 11358.
[12] K. Kawamura, J.F. Hartwig, J. Am. Chem. Soc. 123 (2001)
8422.
[13] C.N. Iverson, M.R. Smith, J. Am. Chem. Soc. 121 (1999) 7696.
[14] S. Shimada, A.S. Batsanov, J.A.K. Howard, T.B. Marder,
Angew. Chem. Int. Ed. Engl. 40 (2001) 2168.
[15] G.J. Irvine, C.E.F. Rickard, W.R. Roper, A. Williamson, L.J.
Wright, Angew. Chem. Int. Ed. Engl. 39 (2000) 948.
[16] K.T. Giju, M. Bickelhaupt, G. Frenking, Inorg. Chem. 39 (2000)
4776.
[17] A.A. Dickinson, D.J. Willock, R.J. Calder, S. Aldridge,
Organometallics, submitted.
[18] S. Aldridge, A. Al-Fawaz, R.J. Calder, A.A. Dickinson, D.J.
Willock, M.E. Light, M.B. Hursthouse, Chem. Commun. (2001)
1846.
[19] S. Aldridge, R.J. Calder, K.M.A. Malik, J.W. Steed, J.
Organomet. Chem. 614 (2000) 188.
Complexes of iron and manganese containing the
tetrachlorocatecholboryl (BO2C6Cl4) ligand can be syn-
thesised in reasonable yield by the reaction of the
appropriate organometallic anion with perchlorocate-
cholborane; in addition catecholboryl complexes of iron
can be synthesised by substitution at the boryl centre of
an initially-formed BCl2 complex. Crystallographic data
for (h5-C5H4Me)Fe(CO)2BO2C6Cl4 further emphasise
the description of such ligands as good s donors, but
poor p acceptors, with the relative orientation of (h5-
C5H4Me)Fe(CO)2 and BO2C6Cl4 moieties being influ-
enced by weak intramolecular CꢀH···O hydrogen
bonding.
[20] S. Aldridge, R.J. Calder, A.A. Dickinson, D.J. Willock, J.W.
Steed, Chem. Commun. (2000) 1377.
[21] (a) A. Kerr, T.B. Marder, N.C. Norman, A.G. Orpen, M.J.
Quayle, C.R. Rice, P.L. Timms, G.R. Whittell, Chem. Commun.
(1998) 319;
5. Supplementary material
(b) N. Lu, N.C. Norman, A.G. Orpen, M.J. Quayle, P.L.
Timms, G.R. Whittell, Dalton Trans. (2000) 4032.
[22] W. Clegg, F.J. Lawlor, G. Lesley, T.B. Marder, N.C. Norman,
A.G. Orpen, M.J. Quayle, C.R. Rice, A.J. Scott, F.E.S. Souza, J.
Organomet. Chem. 550 (1998) 183.
[23] M. Kira, K. Sato, H. Sakurai, J. Am. Chem. Soc. 110 (1988)
4599.
[24] D. Ma¨nnig, H. No¨th, J. Chem. Soc. Dalton Trans. (1985) 1689.
[25] R.B. King, Acc. Chem. Res. 3 (1970) 417.
[26] A.J.M. Duisenberg, J. Appl. Crystallogr. 25 (1992) 92.
Crystallographic data for the structural analysis of
compound 2% have been deposited with the Cambridge
Crystallographic Data Centre, CCDC no. 171824.
Copies of this information may be obtained free of
charge from The Director, CCDC, 12 Union Road,