Page 5 of 6
ACS Catalysis
1
5556. (b) Erickson, J. D.; Lai, T. Y.; Liptrot, D. J.; Olmstead, M. M.;
Added Alkenes. Angew. Chem. Int. Ed. 2017, 56, 3712. (b) Wu, L.;
Chitnis, S. S.; Jiao, H.; Annibale, V. T.; Manners, I. Non-Metal-Catalyzed
Heterodehydrocoupling of Phosphines and Hydrosilanes: Mechanistic
Power, P. P. Catalytic dehydrocoupling of amines and boranes by an
incipient tin(II) hydride. Chem. Commun. 2016, 52, 13656.
1
2
3
4
5
6
7
8
9
(
8) Bouhadir, G.; Amgoune, A.; Bourissou, D. Adv. Organomet. Chem.
6 5 3
Studies of B(C F ) -Mediated Formation of P–Si Bonds. J. Am. Chem.
Soc. 2017, 139, 16780.
(21) In situ generated aldimines have been observed to eventually act as
2010, 58, 1.
(9) (a) Bebbington, M. W. P.; Bontemps, S.; Bouhadir, G.; Bourissou,
D. Photoisomerizable Heterodienes Derived from a Phosphine Borane.
Angew. Chem. Int. Ed. 2007, 46, 3333. (b) Moebs-Sanchez, S.; Bouhadir,
G.; Saffon, N.; Maron, L.; Bourissou, D. Tracking reactive intermediates
in phosphine-promoted reactions with ambiphilic phosphino-boranes.
Chem. Commun. 2008, 3435. (c) Porcel, S.; Bouhadir, G.; Saffon, N.;
Maron, L.; Bourissou, D. Reaction of Singlet Dioxygen with Phosphine–
Borane Derivatives: From Transient Phosphine Peroxides to Crystalline
Peroxoboronates. Angew. Chem., Int. Ed. 2010, 49, 6186. (d) Basle, O.;
Porcel, S.; Ladeira, S.; Bouhadir, G.; Bourissou, D. Phosphine-boronates:
efficient bifunctional organocatalysts for Michael addition. Chem.
Commun. 2012, 48, 4495. (e) Declercq, R.; Bouhadir, G.; Bourissou, D.;
Legaré, M.-A.; Courtemanche, M.-A.; Nahi, K. S.; Bouchard, N.;
Fontaine, F.-G.; Maron, L. Hydroboration of Carbon Dioxide Using
Ambiphilic Phosphine–Borane Catalysts: On the Role of the
Formaldehyde Adduct. ACS Catal. 2015, 5, 2513.
H
2
acceptors in the BCF-promoted quinolone synthesis: Fasano, V.;
Radcliffe, J. E.; Ingleson, M. J. Mechanistic Insights into the B(C F ) -
6 5 3
Initiated Aldehyde–Aniline–Alkyne Reaction To Form Substituted
Quinolines. Organometallics 2017, 36, 1623.
(22) For transfer hydrogenation of imines with ammonia-borane, see:
Li, S.; Li, G.; Meng, W.; Du, H. A Frustrated Lewis Pair Catalyzed
Asymmetric Transfer Hydrogenation of Imines Using Ammonia Borane.
J. Am. Chem. Soc. 2016, 138, 12956.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(23) For dihydrogen transfer from ammonia-borane and poly(amine-
boranes) to aldimine 5, see: (a) Yang, X.; Zhao, L.; Fox, T.; Wang, Z. X.;
Berke, H. Transfer Hydrogenation of Imines with Ammonia–Borane: A
Concerted Double-Hydrogen-Transfer Reaction. Angew. Chem. Int. Ed.
2010, 49, 2058. (b) Ledoux, A.; Larini, P.; Boisson, C.; Monteil, V.;
Raynaud, J.; Lacôte, E. Polyboramines for Hydrogen Release: Polymers
Containing Lewis Pairs in their Backbone. Angew. Chem. Int. Ed. 2015,
54, 15744.
(24) (a) Luo, W.; Campbell, P. G.; Zakharov, L. N.; Liu, S. Y. A
Single-Component Liquid-Phase Hydrogen Storage Material. J. Am.
Chem. Soc. 2011, 133, 19326. (b) Luo, W.; Zakharov, L. N.; Liu, S. Y.
1,2-BN Cyclohexane: Synthesis, Structure, Dynamics, and Reactivity. J.
Am. Chem. Soc. 2011, 133, 13006. (c) Chen, G.; Zakharov, L. N.;
Bowden, M. E.; Karkamkar, A. J.; Whittemore, S. M.; Garner III, E. B.;
Mikulas, T. C.; Dixon, D. A.; Autrey, T.; Liu, S. Y. Bis-BN Cyclohexane:
A Remarkably Kinetically Stable Chemical Hydrogen Storage Material. J.
Am. Chem. Soc 2015, 137, 134. (d) Kumar, A.; Ishibashi, J. S. A.; Hooper,
T. N.; Mikulas, T. C.; Dixon, D. A.; Liu, S. Y.; Weller, A. S. The
Synthesis, Characterization and Dehydrogenation of Sigma-Complexes of
BN-Cyclohexanes. Chem. Eur. J. 2016, 22, 310.
(25) (a) Wallis, C. J.; Dyer, H.; Vendier, L.; Alcaraz, G.; Sabo-Etienne,
S. Dehydrogenation of Diamine–Monoboranes to Cyclic Diaminoboranes:
Efficient Ruthenium-Catalyzed Dehydrogenative Cyclization. Angew.
Chem. Int. Ed. 2012, 51, 3646. (b) Wallis, C. J.; Alcaraz, G.; Petit, A. S.;
Poblador-Bahamonde, A. I.; Clot, E.; Bijani, C.; Vendier, L.; Sabo-
Etienne, S. A Highly Effective Ruthenium System for the Catalyzed
Dehydrogenative Cyclization of Amine–Boranes to Cyclic Boranes under
Mild Conditions. Chem. Eur. J. 2015, 21, 13080. (c) McLellan, R.;
Kennedy, A. R.; Orr, S. A.; Robertson, S. D.; Mulvey, R. E. Lithium
Dihydropyridine Dehydrogenation Catalysis: A Group 1 Approach to the
Cyclization of Diamine Boranes. Angew. Chem. Int. Ed. 2017, 56, 1036.
(26) Özgün, T.; Ye, K. Y.; Daniliuc, C. G.; Wibbeling, B.; Liu, L.;
Grimme, S.; Kehr, G.; Erker, G. Why Does the Intramolecular Tri-
(10) For precedents of phosphine-boranes with quasi thermoneutral
PB interactions, see: (a) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.;
Froehlich, R.; Grimme, S.; Stephan, D. W. Rapid intramolecular
heterolytic dihydrogen activation by
phosphane-borane adduct. Chem. Commun. 2007, 5072. (b) Bontemps, S;
Bouhadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Quasi-
Thermoneutral P → B Interactions within Di– and Tri–Phosphine
Boranes. Inorg. Chem. 2007, 46, 5149.
a four-membered heterocyclic
(11) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W.
Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124. (b)
Schnurr, A.; Vitze, H.; Bolte, M.; Lerner, H. W.; Wagner, M. Rigid,
Fluoroarene-Containing Phosphonium Borates and Boranes: Syntheses
and Reactivity Studies. Organometallics 2010, 29, 6012.
(12) Chen, G. Q.; Kehr, G.; Daniliuc, C. G.; Mück-Lichtenfeld, C.;
Erker, G. Formation of Thermally Robust Frustrated Lewis Pairs by
Electrocyclic Ring Closure Reactions. Angew. Chem. Int. Ed. 2016, 55,
5
526.
13) (a) Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H. W.; Wagner,
(
M. A Highly Reactive Geminal P/B Frustrated Lewis Pair: Expanding the
Scope to C-X (X=Cl, Br) Bond Activation. Chem. Eur. J. 2016, 22, 3478.
b) Wang, L.; Samigullin, K.; Wagner, M.; McQuilken, A. C.; Warren, T.
H.; Daniliuc, C. G.; Kehr, G.; Erker, G. An Ethylene-Bridged
Phosphane/Borane Frustrated Lewis Pair Featuring the -B(Fxyl) Lewis
2
Acid Component. Chem. Eur. J. 2016, 22, 11015.
(
(14) Samigullin, K.; Bolte, M.; Lerner, H. W.; Wagner, M. Facile
Synthesis of (3,5-(CF BX (X = H, OMe, F, Cl, Br): Reagents for
the Introduction of a Strong Boryl Acceptor Unit. Organometallics 2014,
33, 3564.
3 2 6 3 2
) C H )
methylene-Bridged Frustrated Lewis Pair Mes
Activate Dihydrogen? Chem. Eur. J. 2016, 22, 5988.
(27) Fixation of BH has also been authenticated as a possible deactiva-
2 2 2 2 6 5 2
PCH CH CH B(C F ) Not
(
(
15) See Supporting Information for details.
16) The o-phenylene Mes P/B(C
3
F
5
)
2
derivative displays
a
tion pathway for TM catalysts, see: (a) Denney, M. C.; Pons, V.; Hebden,
T. J.; Heinekey, D. M.; Goldberg, K. I. Efficient Catalysis of Ammonia
Borane Dehydrogenation. J. Am. Chem. Soc. 2006, 128, 12048. (b) Glüer,
A.; Förster, M.; Celinski, V. R.; Schmedt auf der Günne, J.; Holthausen,
M. C.; Schneider, S. Highly Active Iron Catalyst for Ammonia Borane
Dehydrocoupling at Room Temperature. ACS Catal. 2015, 5, 7214.
(28) For such a hydrogen transfer between N,B compounds, see: Leit-
ao, E. M.; Stubbs, N. E.; Robertson, A. P. M.; Helten, H.; Cox, R. J.;
Lloyd-Jones, G. C.; Manners, I. Mechanism of Metal-Free Hydrogen
Transfer between Amine-Boranes and Aminoboranes. J. Am. Chem. Soc.
2012, 134, 16805.
2
6
12
significantly longer P-B distance of 2.203(6) Å.
(17) For a detailed DFT study of the factors influencing the thermody-
namics of H activation by FLP, see: Rokob, T. A.; Hamza, A.; Pápai, I.
Rationalizing the Reactivity of Frustrated Lewis Pairs: Thermodynamics
of H Activation and the Role of Acid−Base Properties. J. Am. Chem. Soc.
2009, 131, 10701.
18) With ammonia-borane, one equivalent of H
is rapidly released, but no catalytic turnover is observed.
19) For catalyst-free B-N dehydrocoupling, see: (a) Helten, H.;
2
2
(
2
per phosphine-borane
(
Robertson, A. P. M.; Staubitz, A.; Vance, J. R.; Haddow, M. F.; Manners,
I. "Spontaneous" Ambient Temperature Dehydrocoupling of Aromatic
Amine-Boranes. Chem. Eur. J. 2012, 18, 4665. (b) Romero, E. A.; Peltier,
J. L.; Jazzar, R.; Bertrand, G. Catalyst-free dehydrocoupling of amines,
alcohols, and thiols with pinacol borane and 9-borabicyclononane (9-
BBN). Chem. Commun. 2016, 52, 10563.
(29) The activation of amine-boranes by FLPs A and B was proposed
4
,5b
to start by heterolytic splitting of the N–H and B–H bonds, respectively.
(30) (a) Amgoune, A.; Bourissou, D. σ-Acceptor, Z-type ligands for
transition metals. Chem. Commun. 2011, 47, 859. (b) Bouhadir, G.;
Bourissou, D. Complexes of ambiphilic ligands: reactivity and catalytic
applications. Chem. Soc. Rev. 2016, 45, 1065.
(20) For recent examples in BCF and FLP-catalyzed reactions, see: (a)
Yin, Q.; Klare, H. F. T.; Oestreich, M. Catalytic Friedel–Crafts C−H
Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by
ACS Paragon Plus Environment