PCCP
Paper
photocurrent upon illumination with solar light, which pre- 12 S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki,
destines it for application in p-type dye-sensitized solar cells.
E. Suzuki and T. Abe, J. Phys. Chem. C, 2008, 112, 16134.
The photoelectrochemical efficiency considerably outperforms 13 Y. L. Zhong, K. P. Loh, A. Midya and Z. K. Chen, Chem.
that of non-covalently derivatized BDD with P1. The found external
Mater., 2008, 20, 3137.
quantum efficiency (IPCE) of the P1-sensitized diamond is not 14 W. S. Yeap, X. Liu, D. Bevk, A. Pasquarelli, L. Lutsen,
far from that of the flat titania electrode sensitized by a standard
Ru–bipyridine complex, which has been frequently used in the
M. Fahlman, W. Maes and K. Haenen, ACS Appl. Mater.
Interfaces, 2014, 6, 10322.
n-type solar cells. The sensitized photocurrent is reasonably 15 R. Caterino, R. Csiki, A. Lyuleeva, J. Pfisterer, M. Wiesinger,
stable during ca. 40 hours of illumination at 1 Sun (AM 1.5),
but there are certain photo-initiated changes of the P1 dye, both
pure and diamond-anchored.
Model experiments in ethanolic solutions show that P1 is
sensitive to photochemical degradation in solar light, as com-
S. D. Janssens, K. Haenen, A. Cattani-Scholz, M. Stutzmann
and J. A. Garrido, ACS Appl. Mater. Interfaces, 2015, 7, 8099.
16 W. S. Yeap, D. Bevk, X. Liu, H. Krysova, A. Pasquarelli,
D. Vanderzande, L. Lutsen, L. Kavan, M. Fahlman, W. Maes
and K. Haenen, RSC Adv., 2014, 4, 42044.
pared to another generic dye for solar cells, i.e. N-719. The 17 H. Krysova, L. Kavan, Z. Vlckova-Zivcova, W. S. Yeap,
former dye is totally degraded upon 24 hours of illumination in
solution to more than ten (yet unidentified) products. The
P. Verstappen, W. Maes, K. Haenen, F. Gao and C. E. Nebel,
RSC Adv., 2015, 5, 81069.
degradation is a two-stage process in which the initially 18 P. Qin, H. Zhu, T. Edvinsson, G. Boschloo, A. Hagfeldt and
photo-generated products further decompose in complicated dark
L. Sun, J. Am. Chem. Soc., 2008, 130, 8570.
reactions. These findings need to be taken into account for 19 P. Qin, J. Wiberg, E. A. Gibson, M. Linder, L. Li, T. Brinck,
optimization of organic chromophores for solar cells in general.
A. Hagfeldt, B. Albinsson and L. Sun, J. Phys. Chem. C, 2010,
14, 4738.
1
2
2
2
0 X. Xu, J. Cui, J. Han, J. Zhang, Y. Zhang, L. Luan, G. Alemu,
Z. Wang, Y. Shen, D. Xiong, W. Chen, Z. Wei, S. Yang, B. Hu,
Y. Cheng and M. Wang, Sci. Rep., 2014, 4, 3961.1.
1 Z. Xu, D. Xiong, H. Wang, W. Zhang, X. Zeng, L. Ming,
W. Chen, X. Xu, J. Cui, M. Wang, S. Powar, U. Bach and
Y. B. Cheng, J. Mater. Chem. A, 2014, 2, 2968.
Acknowledgements
This work was supported by the Czech Science Foundation,
contract No. 13-31783S.
2 F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li and
L. Sun, J. Am. Chem. Soc., 2015, 137, 9153.
References
1
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, 23 L. Li, L. Duan, F. Wen, C. Li, M. Wang, A. Hagfeldt and
Chem. Rev., 2010, 110, 6595. L. Sun, Chem. Commun., 2012, 48, 988.
H. Tian, J. Oscarsson, E. Gabrielsson, S. K. Eriksson, R. Lindblad, 24 H. Krysova, Z. Vlckova-Zivcova, J. Barton, V. Petrak, M. Nesladek,
2
B. Xu, Y. Hao, G. Boschloo, E. M. J. Johansson, J. M. Gardner,
A. Hagfeldt, H. Rensmo and L. Sun, Sci. Rep., 2014, 4, 4282.
S. Powar, T. Daeneke, M. T. Ma, D. Fu, N. W. Duffy, G. Goetz,
M. Cigler and L. Kavan, Phys. Chem. Chem. Phys., 2015, 17, 1165.
25 Z. Vlckova-Zivcova, O. Frank, V. Petrak, H. Tarabkova, J. Vacik,
M. Nesladek and L. Kavan, Electrochim. Acta, 2013, 87, 518.
3
M. Weidelener, A. Mishra, P. Baeuerle, L. Spiccia and 26 T. Strother, T. Knickerbocker, J. Russell, J. E. Butler,
U. Bach, Angew. Chem., Int. Ed., 2013, 52, 602. L. M. Smith and R. J. Hamers, Langmuir, 2002, 18, 968.
A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y. B. Cheng, 27 W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. Gerbi,
4
5
A. Mishra, P. B ¨a uerle and U. Bach, Nat. Mater., 2010, 9, 31.
K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa and
M. Hanaya, Chem. Commun., 2015, 51, 15894.
N. Yang, J. S. Foord and X. Jiang, Carbon, 2016, 99, 90.
A. Fujishima, Y. Einaga, T. N. Rao and D. A. Tryk, Diamond
Electrochemistry, Elsevier, Tokyo, 2005.
D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. Russell,
L. M. Smith and R. J. Hamers, Nat. Mater., 2002, 1, 253.
28 A. Haertl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R.
Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmueller
and M. Stutzmann, Nat. Mater., 2004, 3, 736.
6
7
29 X. Wang, P. E. Colavita, J. A. Streifer, J. E. Butler and
R. J. Hamers, J. Phys. Chem. C, 2010, 114, 4067.
8
L. Kavan, Z. Vlckova-Zivcova, V. Petrak, O. Frank, P. Janda,
H. Tarabkova, M. Nesladek and V. Mortet, Electrochim. Acta, 30 S. J. Green, L. S. A. Mahe, D. R. Rosseinsky and C. P. Winlove,
015, 179, 626. Electrochim. Acta, 2013, 107, 111.
C. H. Y. X. Lim, Y. L. Zhong, S. Janssens, M. Nesladek and 31 L. Kavan, M. Gr ¨a tzel, S. E. Gilbert, C. Klemenz and H. J. Scheel,
K. P. Loh, Adv. Funct. Mater., 2010, 20, 1313. J. Am. Chem. Soc., 1996, 118, 6716.
0 Y. L. Zhong, A. Midya, Z. Ng, Z. K. Chen, M. Daenen, 32 S. M. K. Rendon, D. Mavrynsky, A. Meierjohann, A. Tiihonen,
2
9
1
1
M. Nesladek and K. P. Loh, J. Am. Chem. Soc., 2008, 130, 17218.
K. Miettunen, I. Asghar, J. Halme, L. Kronberg and R. Leino,
1 S. D. Janssens, P. Pobedinskas, J. Vacik, V. Petrikova, B. Ruttens,
Rapid Commun. Mass Spectrom., 2015, 29, 2245.
J. D’Haen, M. Nesladek, K. Haenen and P. Wagner, New J. Phys., 33 F. Nour-Mohhamadi, S. D. Nguyen, G. Boschloo, A. Hagfeldt
011, 13, 083008. and T. Lund, J. Phys. Chem. B, 2005, 109, 22413.
2
This journal is ©the Owner Societies 2016
Phys. Chem. Chem. Phys.