Bioconjugate Chemistry
Article
plasma and vacuolar membranes. Proc. Natl. Acad. Sci. U. S. A. 107,
22728−22733.
(18) Alejandro, S., Lee, Y., Tohge, T., Sudre, D., Osorio, S., Park, J.,
Bovet, L., Lee, Y., Geldner, N., Fernie, A. R., and Martinoia, E. (2012)
AtABCG29 is a monolignol transporter involved in lignin biosynthesis.
Curr. Biol. 22, 1207−1212.
(19) Sibout, R., and Hofte, H. (2012) Plant cell biology: The ABC of
monolignol transport. Curr. Biol. 22, R533−R535.
(20) Lee, Y., Rubio, M. C., Alassimone, J., and Geldner, N. (2013) A
mechanism for localized lignin deposition in the endodermis. Cell 153,
402−412.
Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences
under Award # DE-SC0001090 (to T.R. and C.T.A.).
REFERENCES
■
(1) Boerjan, W., Ralph, J., and Baucher, M. (2003) Lignin
biosynthesis. Annu. Rev. Plant Biol. 54, 519−546.
(2) Bonawitz, N. D., and Chapple, C. (2010) The genetics of lignin
biosynthesis: Connecting genotype to phenotype. Annu. Rev. Genet. 44,
337−363.
(21) Zhao, Q., Nakashima, J., Chen, F., Yin, Y., Fu, C., Yun, J., Shao,
H., Wang, X., Wang, Z. Y., and Dixon, R. A. (2013) Laccase is
necessary and nonredundant with peroxidase for lignin polymerization
during vascular development in Arabidopsis. Plant Cell 25, 3976−3987.
(22) Gierlinger, N., and Schwanninger, M. (2006) Chemical imaging
of poplar wood cell walls by confocal Raman microscopy. Plant Physiol.
140, 1246−1254.
(23) Tsien, R. Y. (2009) Constructing and exploiting the fluorescent
protein paintbox. Angew. Chem., Int. Ed. 48, 5612−5626.
(24) Schmidt, M., Schwartzberg, A. M., Carroll, A., Chaibang, A.,
Adams, P. D., and Schuck, P. J. (2010) Raman imaging of cell wall
polymers in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 395,
521−523.
(25) Chudakov, D. M., Matz, M. V., Lukyanov, S., and Lukyanov, K.
A. (2010) Fluorescent proteins and their applications in imaging living
cells and tissues. Physiol. Rev. 90, 1103−1163.
(26) Lee, K. J., Marcus, S. E., and Knox, J. P. (2011) Cell wall
biology: Perspectives from cell wall imaging. Mol. Plant 4, 212−219.
(27) Flors, C. (2013) Super-resolution fluorescence imaging of
directly labelled DNA: From microscopy standards to living cells. J.
Microsc. 251, 1−4.
(28) Shieh, P., Siegrist, M. S., Cullen, A. J., and Bertozzi, C. R. (2014)
Imaging bacterial peptidoglycan with near-infrared fluorogenic azide
probes. Proc. Natl. Acad. Sci. U. S. A. 111, 5456−5461.
(29) Laughlin, S. T., and Bertozzi, C. R. (2009) Imaging the glycome.
Proc. Natl. Acad. Sci. U. S. A. 106, 12−17.
(30) Rouhanifard, S. H., Nordstrom, L. U., Zheng, T., and Wu, P.
(2013) Chemical probing of glycans in cells and organisms. Chem. Soc.
Rev. 42, 4284−4296.
(31) Tobimatsu, Y., Davidson, C. L., Grabber, J. H., and Ralph, J.
(2011) Fluorescence-tagged monolignols: Synthesis, and application
to studying in vitro lignification. Biomacromolecules 12, 1752−1761.
(32) Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes,
C., Dima, O., Kim, J. I., Anderson, N., Loque, D., Boerjan, W.,
Chapple, C., and Ralph, J. (2013) Visualization of plant cell wall
lignification using fluorescence-tagged monolignols. Plant J. 76, 357−
366.
(33) Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Loque, D.,
Dima, O., Niculaes, C., Boerjan, W., Kim, J. I., Anderson, N., Chapple,
C., Schuetz, M., Takano, T., Nakatsubo, F., and Ralph, J. (2014)
Synthetic monolignol mimics for understanding lignin biosynthesis,
Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas,
TX, United States, March 16−20, 2014, CELL-185.
(34) Sletten, E. M., and Bertozzi, C. R. (2009) Bioorthogonal
Chemistry: Fishing for selectivity in a sea of functionality. Angew.
Chem., Int. Ed. 48, 6974−6998.
(35) Anderson, C. T., and Wallace, I. S. (2012) Illuminating the wall:
using click chemistry to image pectins in Arabidopsis cell walls. Plant
Signaling Behav. 7, 661−663.
(36) Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B.
(2002) A stepwise Huisgen cycloaddition process: Copper(I)-
catalyzed regioselective ″ligation″ of azides and terminal alkynes.
Angew. Chem., Int. Ed. 41, 2596−2599.
(3) Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan,
W. (2010) Lignin biosynthesis and structure. Plant Physiol. 153, 895−
905.
(4) Bonawitz, N. D., and Chapple, C. (2013) Can genetic
engineering of lignin deposition be accomplished without an
unacceptable yield penalty? Curr. Opin. Biotechnol. 24, 336−343.
(5) Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen,
F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M.,
Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G.
A., and Wyman, C. E. (2014) Lignin valorization: improving lignin
processing in the biorefinery, Science 344, DOI: 10.1126/
science.1246843.
(6) Vanholme, R., Morreel, K., Ralph, J., and Boerjan, W. (2008)
Lignin engineering. Curr. Opin. Plant Biol. 11, 278−285.
(7) Bonawitz, N. D., Kim, J. I., Tobimatsu, Y., Ciesielski, P. N.,
Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B. S.,
Ladisch, M., and Chapple, C. (2014) Disruption of mediator rescues
the stunted growth of a lignin-deficient Arabidopsis mutant. Nature
509, 376−380.
(8) Mansfield, S. D., Kang, K.-Y., and Chapple, C. (2012) Designed
for deconstruction - Poplar trees altered in cell wall lignification
improve the efficacy of bioethanol production. New Phytol. 194, 91−
101.
(9) Vanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J. H.,
Ralph, J., and Boerjan, W. (2012) Metabolic engineering of novel
lignin in biomass crops. New Phytol. 196, 978−1000.
(10) Simmons, B. A., Loque, D., and Ralph, J. (2010) Advances in
modifying lignin for enhanced biofuel production. Curr. Opin. Plant
Biol. 13, 313−320.
(11) Wilkerson, C. G., Mansfield, S. D., Lu, F., Withers, S., Park, J. Y.,
Karlen, S. D., Gonzales-Vigil, E., Padmakshan, D., Unda, F., Rencoret,
J. R., and Ralph, J. (2014) Monolignol ferulate transferase introduces
chemically labile linkages into the lignin backbone. Science 344, 90−93.
(12) Wang, J. P., Naik, P. P., Chen, H. C., Shi, R., Lin, C. Y., Liu, J.,
Shuford, C. M., Li, Q., Sun, Y. H., Tunlaya-Anukit, S., Williams, C. M.,
Muddiman, D. C., Ducoste, J. J., Sederoff, R. R., and Chiang, V. L.
(2014) Complete proteomic-based enzyme reaction and inhibition
kinetics reveal how monolignol biosynthetic enzyme families affect
metabolic flux and lignin in Populus trichocarpa. Plant Cell 26, 894−
914.
(13) Vanholme, R., Cesarino, I., Rataj, K., Xiao, Y., Sundin, L.,
Goeminne, G., Kim, H., Cross, J., Morreel, K., Araujo, P., Welsh, L.,
Haustraete, J., McClellan, C., Vanholme, B., Ralph, J., Simpson, G. G.,
Halpin, C., and Boerjan, W. (2013) Caffeoyl shikimate esterase (CSE)
is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science
341, 1103−1106.
(14) Liu, C.-J. (2012) Deciphering the enigma of lignification:
Precursor transport, oxidation, and the topochemistry of lignin
assembly. Mol. Plant 5, 304−317.
(15) Wang, Y., Chantreau, M., Sibout, R., and Hawkins, S. (2013)
Plant cell wall lignification and monolignol metabolism. Front. Plant
Sci. 4, 220.
(16) Achyuthan, K. E., Achyuthan, A. M., Adams, P. D., Dirk, S. M.,
Harper, J. C., Simmons, B. A., and Singh, A. K. (2010) Supramolecular
self-assembled chaos: Polyphenolic lignin’s barrier to cost-effective
lignocellulosic biofuels. Molecules 15, 8641−8688.
(17) Miao, Y.-C., and Liu, C.-J. (2010) ATP-binding cassette-like
transporters are involved in the transport of lignin precursors across
(37) Tornoe, C. W., Christensen, C., and Meldal, M. (2002)
Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific
copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to
azides. J. Org. Chem. 67, 3057−3064.
G
dx.doi.org/10.1021/bc500411u | Bioconjugate Chem. XXXX, XXX, XXX−XXX