LETTER
Synthesis of 5-Ylidene-4-Amino-2(5H)-Furanones
1715
between the diastereoselectivities observed for the forma-
tion of aldols 4 and alkenes 6.
H
2
O (2 × 2 mL), dried over anhydrous MgSO , filtered, and evapo-
4
rated. The residue was purified by silica gel column chromatogra-
phy to afford the (Z)-3-(benzylamino)-[5-oxo-(5H)-furan-2-
ylidene]acetaldehyde (7d) {or (Z)-3-(p-methoxybenzylamino)-[5-
oxo-(5H)-furan-2-ylidene]acetaldehyde (7e)}.
HO
CHO
SO3⋅py
Et3N, DMSO
O
O
O
Compound 7d
O
–1 1
IR (NaCl): ν = 3317, 1753, 1739, 1636, 1615 cm . H NMR (250
CH2Cl2
MHz, CDCl ): δ = 4.41 (d, J = 5.5 Hz, 2 H), 4.98 (s, 1 H), 5.68 (d,
3
PHN
PHN
d–e
J = 7.5 Hz, 1 H), 5.84–5.87 (s, NH), 7.29–7.42 (m, 5 H, Ph), 10.10
7
7
d P = Bn, 76%
e P = PMB, 79%
6
13
(
d, J = 7.5 Hz, 1 H). C NMR (62.5 MHz, CDCl ): δ = 49.7, 84.5,
3
1
02.2, 127.8, 128.7, 129.4, 135.3, 157.5, 158.3, 167.7, 189.3.
+
Scheme 4 Synthesis of protected (Z)-basidalin
HRMS: m/z [M + Na] calcd for C H NO : 252.0631; found:
13 11 3
2
52.0633.
Compound 7e
Pyridinium chlorochromate oxidation of the allylic alco-
hol 6f did not lead to the expected basidalin. This could be
due to overoxidation of the unprotected nitrogen atom in
compound 6f. On the other hand, oxidation of 6d and 6e
1
H NMR (250 MHz, CDCl ): δ = 3.82 (s, 3 H), 4.33 (d, J = 5.5 Hz,
3
2
H), 5.00 (s, 1 H), 5.30 (s, NH), 5.58 (d, J = 7.5 Hz, 1 H), 6.91 (d,
J = 8.0 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 2 H), 10.13 (d, J = 7.5 Hz, 1
13
H). C NMR (62.5 MHz, CDCl ): δ = 49.0, 55.4, 84.3, 102.2,
3
2
7
with SO ·pyridine gave the corresponding aldehydes 7d 114.5, 127.0, 129.0, 129.2, 159.9, 157.1, 158.1, 167.5, 189.0.
3
+
and 7e in good yields (Scheme 4). Attempts to remove the HRMS: m/z [M + Na] calcd for C14
H13NO : 282.0736; found:
4
2
82.0736.
p-methoxybenzyl group were conducted on aldehyde 7e
using ceric ammonium nitrate,28 DDQ, and TFA.
29
30
However, although the formation of p-methoxybenzalde-
hyde was observed, basidalin could not be isolated from
the mixture.
Acknowledgment
We wish to thank CNRS, UPMC for funding. FR2769 is acknow-
ledged for technical assistance. V.T. thanks the ‘Ministère de l’Edu-
In conclusion, we have described a methodology wherein cation Nationale, de l’Enseignement Supérieur et de la Recherche’
for a fellowship.
C5 ester-substituted tetronamide 2 can be employed as
malonate equivalent in the Knoevenagel–Doebner reac-
tion for the synthesis of 5-ylidene-4-amino-2(5H)-fura-
nones. The process is mild, efficient, and practical. Some
insights into the mechanism of the reaction and an appli-
cation to the synthesis of two protected basidalin deriva-
tives are presented.
References and Notes
(1) (a) Schlessinger, R. H.; Yu, Y. J. J. Am. Chem. Soc. 1996,
1
18, 3301. (b) Clark, J. S.; Marlin, F.; Nay, B.; Wilson, C.
Org. Lett. 2003, 5, 89. (c) Samaritani, S.; Bruyère, H.;
Ballereau, S.; Royer, J. C. R. Chimie 2005, 8, 841.
(
d) Bruyère, H.; Dos Reis, C.; Samaritani, S.; Ballereau, S.;
Royer, J. Synthesis 2006, 1673.
General Procedure for the Preparation of Compounds 6
(2) For some examples, see: Wang, J.; Jiang, X.; Chen, M.; Ge,
Z.; Hu, Y.; Hu, H. J. Chem. Soc., Perkin Trans. 1 2001, 66.
(3) (a) Zhou, L.-H.; Yu, X.-Q.; Pu, L. J. Org. Chem. 2009, 74,
2013. (b) Hertzberg, R.; Moberg, C. J. Org. Chem. 2013, 78,
9174; and references cited therein.
(4) (a) Nishide, K.; Aramata, A.; Kamanaka, T.; Inoue, T.;
Node, M. Tetrahedron 1994, 50, 8337. (b) Dankwardt, S.
M.; Dankwardt, J. W.; Schlessinger, R. H. Tetrahedron Lett.
To a solution of tetronamide 2 (0.88 mmol) in THF (10 mL) was
added NaOH (0.07 g; 1.76 mmol) in H O (1 mL), followed by the
2
aldehyde (0.88 mmol), and the mixture was stirred for 30 min.
Then, 10% HCl was added, and the solution was stirred overnight.
The mixture was then extracted with CH Cl , dried over anhydrous
2
2
MgSO , filtered, and evaporated. The residue was purified by silica
4
gel column chromatography to afford compounds 6d–i.
1
998, 39, 4971. (c) Dankwardt, S. M.; Dankwardt, J. W.;
Schlessinger, R. H. Tetrahedron Lett. 1998, 39, 4975.
d) Dankwardt, S. M.; Dankwardt, J. W.; Schlessinger, R. H.
Compound 6d
-1 1
IR (NaCl): ν = 3616, 3321, 1739, 1614 cm . H NMR (250 MHz,
MeOD): δ = 4.31 (d, J = 3.0 Hz, 2 H), 4.32 (d, J = 7.0 Hz, 2 H), 4.73
(
1
3
Tetrahedron Lett. 1998, 39, 4979. (e) Bruyère, H.;
Ballereau, S.; Selkti, M.; Royer, J. Tetrahedron 2003, 59,
5879.
(s, 1 H), 5.72 (t, J = 7.0 Hz 1 H), 7.21–7.34 (m, 5 H, Ph). C NMR
(62.5 MHz, MeOD): δ = 49.0, 56.6, 82.0, 107.7, 128.1, 128.3,
+
1
29.4, 138.1, 145.6, 160.3, 172.7. HRMS: m/z [M + Na] calcd for
(
5) For cyclizations with NBS, see: (a) Agami, C.; Amiot, F.;
Couty, F.; Dechoux, L. Tetrahedron Lett. 1998, 39, 5373.
(b) Agami, C.; Dechoux, L.; Hebbe, S. Synlett 2001, 1440.
(c) Agami, C.; Dechoux, L.; Hebbe, S.; Moulinas, J.
Synthesis 2002, 79. (d) Agami, C.; Dechoux, L.; Hamon, L.;
Hebbe, S. Synthesis 2003, 859. (e) Banide, E.; Lemau de
Talance, V.; Schmidt, G.; Lubin, H.; Comesse, S.; Dechoux,
L.; Hamon, L.; Kadouri-Puchot, C. Eur. J. Org. Chem. 2007,
4517.
C H NO : 254.0787; found: 254.0789.
1
3
13
3
Compound 6e
1
H NMR (250 MHz, CDCl ): δ = 3.94 (s, 3 H), 4.26 (d, J = 3.0 Hz,
3
2
H), 4.48 (d, J = 6.0 Hz, 2 H), 4.93 (s, 1 H), 5.30 (t, J = 6.0 Hz 1
1
3
H), 6,90 (d, J = 7.0 Hz, 2 H), 7,22 (d, J = 7.0 Hz, 2 H). C NMR
62.5 MHz, CDCl ): δ = 53.8, 56.0, 56.6, 82.0, 107.7, 114.3, 127.0,
(
3
+
127.5, 160.0, 145.6, 160.4, 172.6. HRMS: m/z [M + Na] calcd for
C H NO : 284.0893; found: 284.0896.
1
4
15
4
(
6) (a) Agami, C.; Dechoux, L.; Ménard, C.; Hebbe, S. J. Org.
Chem. 2002, 67, 7573. (b) Alladoum, J.; Dechoux, L.
Tetrahedron Lett. 2005, 46, 8203. (c) Alladoum, J.; Toum,
V.; Hebbe, S.; Kadouri-Puchot, C.; Dechoux, L.
Tetrahedron Lett. 2009, 50, 617.
General Procedure for the Preparation of Compounds 7d,e
To a solution of 5-ylidene-4-amino-2(5H)-furanones 6d,e (0.32
mmol) in CH Cl (2 mL) was successively added SO ·pyridine (65
2
2
3
mg, 0.38 mmol), DMSO (0.4 mL), and Et N (0.4 mL), and the mix-
3
ture was stirred for 4 h. The organic phase was then washed with
©
Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1713–1716