C O M M U N I C A T I O N S
Acknowledgment. Support has been provided by a Grant-in-
Aid from the University of Minnesota.
Supporting Information Available: Experimental details for the
preparation of 2-EAHQ and the generation of H
2
O
2
in toluene; the
-•
reactions of O
2
with H O , 2-nitrobenzoic acid, and tert-butyl alcohol;
2 2
and the detection of cresols using Gibbs’s method. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) McCord, J. M.; Fridovich, I. J. Biol. Chem. 1968, 243, 5753-5760.
(
b) Massey, V.; Strickland, S.; Mayhew, S. G.; Howell, L. G.; Engel, P.
C.; Matthews, R. G.; Schuman, M.; Sullivan, P. A. Biochem. Biophys.
Res. Commun. 1969, 36, 891-897. (c) Knowles, P. F.; Gibson, J. F.; Pick,
F. M.; Bray, R. C. Biochem. J 1969, 111, 53-58. (d) Bernacchia, A.;
Biondi, A.; Genova, M. L.; Lenaz, G.; Falasca, A. Toxicol. Mech. Methods
2004, 14, 25-30.
Figure 1. Production of dioxetane 2 during exposure of 1 (100 µM) to
-
•
O2 (2 mM) and H2O2 (10 mM) at 25 °C in toluene (O), in 57% toluene-
d8 (0), or in toluene with 0.54 mM DABCO (4). Data are fit to a
monoexponential growth function. Error bars represent one standard
deviation from four replicate measurements.
(2) Halliwell, B.; Clement, M. V.; Long, L. H. FEBS Lett. 2000, 486, 10-
13.
(
(
(
(
3) Peters, J. W.; Foote, C. S. J. Am. Chem. Soc. 1976, 98, 873-875.
4) Liochev, S. I.; Fridovich, I. Redox Rep. 2002, 7, 55-57.
5) Davies, M. J. Biochem. Biophys. Res. Commun. 2003, 305, 761-770.
6) (a) Nilsson, R.; Merkel, P. B.; Kearns, D. R. Photochem. Photobiol. 1972,
Scheme 2
1
2
5
6, 117-124. (b) Matheson, I. B. C.; Lee, J. Photochem. Photobiol. 1979,
9, 879-881. (c) Michaeli, A.; Feitelson, J. Photochem. Photobiol. 1994,
9, 284-289.
(
7) (a) Hallett, F. R.; Hallett, B. P.; Snipes, W. Biophys. J. 1970, 10, 305-
3
15. (b) Rosenthal, I.; Pitts, J. N., Jr. Biophys. J. 1971, 11, 963-966.
(
c) Clagett, D. C.; Galen, T. J. Arch. Biochem. Biophys. 1971, 146, 196-
2
01. (d) Canva, J. J.; Balny, C. Int. J. Radiat. Phys. Chem. 1971, 3, 451-
4
55. (e) Sysak, P. K.; Foote, C. S.; Ching, T.-Y. Photochem. Photobiol.
a
1
Lifetimes for O2 were calculated from the fractional solvent composi-
1977, 26, 19-27.
tion and published lifetimes in pure solvents.2
2
(8) Davies, M. J. Biochim. Biophys. Acta 2005, 1703, 93-109.
9) Haber, F.; Weiss, J. Proc. R. Soc. 1934, A147, 332-351.
(
the total cresol concentration after the reaction of O -•
(10) (a) Koppenol, W. H. Nature 1976, 262, 420-421. (b) Koppenol, W. H.;
2
2 2
with H O
Butler, J.; Van Leeuwen, J. W. Photochem. Photobiol. 1978, 28, 655-
in toluene was found to be less than the detection limit, 200 nM
see Supporting Information). With an upper limit of 200 nM, the
6
60. (c) Afanas’ev, I. B.; Kupriyanova, N. S.; Letuchaya, A. V. Oxygen
Radicals Chem. Biol., Proc., Int. Conf., 3rd 1984, 17-23. (d) Kehrer, J.
(
P. Toxicology 2000, 149, 43-50.
•
-•
yield of OH can be no more than 0.01% relative to the initial O
concentration. This result suggests that the Haber-Weiss mecha-
2
(
11) Koppenol, W. H. Redox Rep. 2001, 6, 229-234.
(12) Koppenol, W. H. Redox Rep. 2002, 7, 59-60.
-•
nism is not important in the reaction of O
2
with H O
2 2
under these
(13) Kellogg, E. W., III; Fridovich, I. J. Biol. Chem. 1975, 250, 8812-8817.
(
(
(
14) (a) Kobayashi, S.; Ando, W. Biochem. Biophys. Res. Commun. 1979, 88,
conditions.
6
76-681. (b) Khan, A. U.; Kasha, M. Proc. Natl. Acad. Sci. U.S.A. 1994,
-
•
Another mechanism has been proposed for the reaction of O
2
91, 12365-12367.
15) (a) White, S. H. Nature 1976, 262, 421-422. (b) Sawyer, D. T.; Roberts,
J. L., Jr.; Calderwood, T. S.; Sugimoto, H.; McDowell, M. S. Philos. Trans.
R. Soc. London, Ser. B 1985, 311, 483-503.
with H
2
O
2 2 2
in aprotic solvent in which H O acts as a proton donor
-
•
26
for O
2
(eqs 2 and 3).
16) MacManus-Spencer, L. A.; Latch, D. E.; Kroncke, K. M.; McNeill, K.
-•
2
f HO - + HO2•
Anal. Chem. 2005, 77, 1200-1205.
H O + O
(2)
(3)
2
2
2
(17) (a) Schaap, A. P.; Chen, T. S.; Handley, R. S.; DeSilva, R.; Giri, P. P.
Tetrahedron Lett. 1987, 28, 1155-1158. (b) Schaap, A. P.; Handley, R.
S.; Giri, B. P. Tetrahedron Lett. 1987, 28, 935-938.
HO + O f HO - + O2
•
-•
(or O )
1
2
2
2
2
(
18) (a) Adam, W.; Fell, R.; Schulz, M. H. Tetrahedron 1993, 49, 2227-
238. (b) Adam, W.; Bronstein, I.; Edwards, B.; Engel, T.; Reinhardt,
D.; Schneider, F. W.; Trofimov, A. V.; Vasil’ev, R. F. J. Am. Chem. Soc.
996, 118, 10400-10407.
2
1
If this mechanism is the source of O
2
in this study, one would
1
expect any acid with a pK similar to that of H
N,N-dimethylformamide (DMF) ) to also react with O
a
2
O
2
(10.7 in
(
19) (a) Matsumoto, M.; Watanabe, N.; Shiono, T.; Suganuma, H.; Matsubara,
J. Tetrahedron Lett. 1997, 38, 5825-5828. (b) Watanabe, N.; Suganuma,
H.; Kobayashi, H.; Mutoh, H.; Katao, Y.; Matsumoto, M. Tetrahedron
27
-•
2
to
1
produce O
zoic acid, which has a pK
was observed. Additionally, no O
2
. However, when H
2 2
O was replaced with 2-nitroben-
1999, 55, 4287-4298.
28
1
a
of 9.9 in DMF, no O
2
production
was observed in the reaction
with another soluble proton donor, tert-butyl alcohol (see
Supporting Information). Thus, a simple acid-base reaction
between O
the mechanism of O
Estimated biological concentrations of H
(20) Sawyer, D. T.; Nanni, E. J., Jr.; Roberts, J. L., Jr. AdV. Chem. Ser. 1982,
1
201, 585-600.
2
(
(
21) Ouannes, C.; Wilson, T. J. Am. Chem. Soc. 1968, 90, 6527-6528.
-
•
of O
2
22) (a) Scurlock, R. D.; Ogilby, P. R. J. Phys. Chem. 1987, 91, 4599-4602.
(b) Clough, R. L.; Dillon, M. P.; Iu, K. K.; Ogilby, P. R. Macromolecules
1989, 22, 3620-3628.
-•
2
and H
2
O
2
does not appear to be sufficient to describe
production in this system.
and O have been
(
(
23) Schuler, R. H.; Albarran, G. Radiat. Phys. Chem. 2002, 64, 189-195.
1
2
24) Albarran, G.; Bentley, J.; Schuler, R. H. J. Phys. Chem. A 2003, 107,
7770-7774.
-
•
O
2 2
2
-
5
-9
(25) (a) Gibbs, H. D. J. Biol. Chem. 1927, 72, 649-664. (b) Ettinger, M. B.;
reported as e10 M and ca. 10 M (pH 7, aqueous), respec-
tively.29 As H
Ruchhoft, C. C. Anal. Chem. 1948, 20, 1191-1196.
-•
O
2 2
is produced in the disproportionation of O
2
,
(
26) (a) Gibian, M. J.; Ungermann, T. J. Am. Chem. Soc. 1979, 101, 1291-
1293. (b) Afanas’ev, I. B.; Kuprianova, N. S. J. Chem. Soc., Perkin Trans.
these species can also be expected to be co-localized in biological
systems. Our results indicate that these species react to produce
2
1985, 1361-1364.
(
27) Nanni, E. J., Jr.; Stallings, M. D.; Sawyer, D. T. J. Am. Chem. Soc. 1980,
102, 4481-4485.
1
2
O but with very low efficiency, and we found no evidence for
•
1
•
(28) Maran, F.; Celadon, D.; Severin, M. G.; Vianello, E. J. Am. Chem. Soc.
991, 113, 9320-9329.
the production of OH. The low yields of O
their formation in the uncatalyzed reaction of O
2
and OH suggest that
1
-•
2
2 2
with H O should
(
29) (a) Rigo, A.; Sytevanato, R.; Finazzi, A., A.; Rotilio, G. FEBS Lett. 1977,
80, 130-132. (b) Melhuish, W. H.; Sutton, H. C. J. Chem. Soc., Chem.
Commun. 1978, 970-971.
be relatively unimportant in biological systems, even in water-free
hydrophobic environments where the stabilities and reactivities of
these ROS may be greater than in aqueous environments.
JA052045B
J. AM. CHEM. SOC.
9
VOL. 127, NO. 25, 2005 8955