522
S. U. Sonavane et al. / Tetrahedron Letters 49 (2008) 520–522
References and notes
Na2S2 (aq)
Q2S2 (org) + 2NaBr(aq)
Na2S(aq) + S(aq)
1. (a) Freeman, F.; Aregullin, M.; Rodriguez, E. Rev.
Heteroat. Chem. 1993, 9, 1–19; (b) Kishi, Y.; Nakatsuga,
S.; Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95,
6493–6495; (c) Tabashi, K.; Kawashima, Y. Chem. Pharm.
Bull. 1993, 41, 1066–1073.
2. (a) Koval, L. V. Russ. Chem. Rev. 1994, 63, 735–750; (b)
Billard, T.; Langlois, B. R. Tetrahedron Lett. 1996, 37,
6865–6868.
Na2S2 (aq) + 2QBr(org)
HO
HO
S
S
+
Br
2QBr
+
Q2S2 (Org)
Br
Scheme 2.
3. (a) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983,
105, 4481–4483; (b) Biebuyck, H. A.; Bain, C. D.;
Whitesides, G. M. Langmuir 1994, 10, 1825–1831, and
references cited therein.
4. Capozzi, G.; Menichetti, S.; Nativi, C. In Syntheses of
sulphones, sulphoxides and cyclic sulphides; Patai, S.,
Rappoport, Z., Eds.; John Wiley and Sons, 1994; pp
529–648.
The present methodology is more effective for the direct
conversion of dihalides to cyclic disulfides (35–90%)
than reported procedures (4–60%).24 Thus, this
methodology provides a simple, versatile and general
route to the construction of a wide variety of medium-
sized cyclic disulfides. In this study we were able to
demonstrate again the utility and efficiency of DDAB
as a phase transfer catalyst.
5. Field, L.; Barbee, R. B. J. Org. Chem. 1969, 34,
36–41.
6. Harpp, D. N.; Gleason, J. G. J. Org. Chem. 1970, 35,
3259–3263.
7. Cleland, W. W. Biochemistry 1964, 3, 480–482.
8. Field, L.; Khim, Y. H. J. Org. Chem. 1972, 37, 2710–
2714.
We propose a putative reaction mechanism using
1,4-dibromo-2-butanol as a model substrate. Aqueous
sodium sulfide with sulfur forms Na2S2. The latter reacts
with the phase transfer catalyst to form the ion pair
Q2S2, which is extracted into the organic phase and
reacts with the substrate to yield the cyclic disulfide
and the original catalyst as shown in Scheme 2.
9. Cragg, R. H.; Weston, A. F. Tetrahedron Lett. 1973, 14,
655–656.
10. (a) Crank, G.; Makin, M. I. H. Aust. J. Chem. 1984, 37,
2331–2337; (b) Movassagh, B.; Lakourag, M. M.; Ghod-
reti, K. Synth. Commun. 1999, 29, 3597–3603.
11. Jia, X.; Zhang, Y.; Zhou, X. Tetrahedron Lett. 1994, 35,
8833–8834.
It is known that the size of the polysulfide anion in water
(SÀx 2 where x = 2, 3, 4, 5) can be determined by control-
ling the sulfide/sulfur ratio.25 We therefore assume that
tri, tetra and higher polysulfides could be synthesized
using the method described above.
12. Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S.
J. Org. Chem. 1995, 60, 7142–7143.
13. Burns, C. J.; Field, L. D.; Morgan, J.; Ridley, D. D.;
Vignerich, V. Tetrahedron Lett. 1999, 40, 6489–6492.
14. (a) Kutil, B.; Cuda, J.; Kempny, L. Czech Patent CS
187958, 1982; Kutil, B.; Cuda, J.; Kempny, L. Chem.
Abstr. 1982, 97, 72064z; (b) Toru, T.; Kenjiro, I.;
Kawanobe, T. Japan Patent JP 2001039947, 2001; Toru,
T.; Kenjiro, I.; Kawanobe, T. Chem. Abstr. 2001, 134,
162815; (c) Gopalan, A. S.; Jacobs, H. K. J. Chem. Soc.,
Perkin Trans. 1 1990, 1897–1900.
In conclusion, a simple, convenient and practical method
has been developed for the synthesis of symmetrical and
unsymmetrical cyclic disulfides using DDAB as a phase
transfer catalyst.
General procedure:
A mixture of sulfur powder
(10 mmol), sodium sulfide (10 mmol) and water (25 ml)
was stirred for 30 min at 50 °C. After dissolution, the
reaction mixture was cooled to room temperature and
DDAB (4 mol %) was added. A mixture of substrate
(5 mmol) and chloroform (50 ml) was added and the
reaction mixture was stirred for the appropriate period
of time at 30 °C. The progress of the reaction was mon-
itored by GC and GC–MS. After completion of the
reaction, the product was extracted twice with diethyl
ether. The combined organic layers were washed with
water and dried over sodium sulfate. The organic layer
was concentrated under reduced pressure to afford a
crystalline (or liquid) dialkyl disulfide. The pure solid
products were obtained by purification on a short silica
gel column using petroleum ether as the eluent and
recrystallization from ethanol. All the products had
15. Ueda, M.; Oishi, Y.; Sakai, N.; Imai, Y. Macromolecules
1982, 15, 248–251.
16. Kamyshny, A.; Ekeltchlk, I.; Gun, J.; Lev, O. Anal. Chem.
2006, 78, 2631–2639.
17. Hase, T. A.; Perakyla, H. Synth. Commun. 1982, 12, 947–
950.
18. Weyerstahl, P.; Oldenburg, T. Flavour Frag. J. 1998, 13,
177–184.
19. Affleck, J. G.; Dougherty, G. J. J. Org. Chem. 1950, 15,
865–868.
20. Backer, H. J.; Evenhuis, N. Trav. Chim. Pays-Bas 1937,
56, 129–136.
21. Chidambaram, M.; Sonavane, S. U.; Zerda, J.; Sasson, Y.
Tetrahedron 2007, 63, 7696–7701; Sonavane, S. U.;
Chidambaram, M.; Almog, J.; Sasson, Y. Tetrahedron
Lett. 2007, 48, 6048–6050.
22. Luttringhaus, von A.; Kabuss, S.; Prinzbach, H.;
Langen- bucher, F. Liebigs Ann. Chem. 1962, 653, 195–
211.
1
satisfactory H NMR, IR and GC–MS.
23. Harpp, D. N.; Bodzay, S. J.; Aida, T.; Chan, T. H.
Tetrahedron Lett. 1986, 27, 441–444.
24. (a) Dodson, R. M.; Nelson, V. G. J. Org. Chem. 1968, 33,
3966–3968.
Acknowledgement
M.C. is grateful to the Pikovski-Valazzy Fund for finan-
cial support.
25. Jaroudi, O. E.; Picquenard, E.; Gobeltz, N.; Demortier,
A.; Corset, J. Inorg. Chem. 1999, 38, 2917–2923.