Notes and references
1 Y. Ofir, B. Samanta and V. M. Rotello, Chem. Soc. Rev., 2008, 37,
1814–1825.
2 M. S. Lamm, N. Sharma, K. Rajagopal, F. L. Beyer,
J. P. Schneider and D. J. Pochan, Adv. Mater., 2008, 20, 447–451.
3 M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van
Horn, Z. Guan, G. Chen and R. S. Krishnan, Science, 2006, 311,
1740–1743.
4 A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314,
1107–1110.
5 C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff,
Nature, 1996, 382, 607–609.
6 A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson,
C. J. Loweth, M. P. Bruchez and P. G. Schultz, Nature, 1996,
382, 609–611.
7 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht,
T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.
8 R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures
on Physics, Addison-Wesley, Reading, MA, 1963, vol. 1, ch. 46.
9 U. H. F. Bunz and V. M. Rotello, Angew. Chem., Int. Ed., 2010, 49,
3268–3279.
Fig. 4 TEM of (a) polymer film self assembled from 3, 5 and CB[8],
(b) mixture of 4, 5 and CB[8], and (c) expansion of rectangle in (a);
scale bars: (a) 500 nm, (b) 100 nm, (c) 200 nm.
10 J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs,
Angew. Chem., Int. Ed., 2005, 44, 4844–4870.
11 H. J. Kim, W. S. Jeon, Y. H. Ko and K. Kim, Proc. Natl. Acad.
Sci. U. S. A., 2002, 99, 5007–5011.
12 J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto,
K. Yamaguchi and K. Kim, J. Am. Chem. Soc., 2000, 122, 540–541.
13 U. Rauwald, F. Biedermann, S. Deroo, C. V. Robinson and
O. A. Scherman, J. Phys. Chem. B, 2010, 114, 8606–8615.
14 K. Moon, J. Grindstaff, D. Sobransingh and A. E. Kaifer, Angew.
Chem., Int. Ed., 2004, 43, 5496–5499.
consists of a single layer of close-packed AuNPs within the
polymer matrix (left), a multilayer region of AuNPs where the
thin film is ‘‘rolled’’ up (middle) and a sparse region of AuNPs
supported on the carbon membrane of the TEM grid (right).
Conversely, a controlled dispersion was not observed for
EG3-AuNP 4 (Fig. 4b) or other MV2+-AuNP controls. More
importantly, no thin film formation was observed in any
of the controls due to the lack of cross linking provided by
the MV-functionalised AuNPs and CB[8].
15 U. Rauwald and O. A. Scherman, Angew. Chem., Int. Ed., 2008,
47, 3950–3953.
16 M. E. Bush, N. D. Bouley and A. R. Urbach, J. Am. Chem. Soc.,
2005, 127, 14511–14517.
In conclusion, we have synthesised AuNPs with
a
mSAM bearing MV2+ binding motifs and water soluble, non-
functional co-ligands. Through reduction of the MV2+ moiety
in the presence of CB[8] we have demonstrated that 2 : 1
(MV+ꢃ)2CCB[8] inclusion complexation occurs, leading to
interparticle aggregation in water and precipitation. Importantly,
we have shown the versatility of the non-covalent attachment
to the MV2+-AuNPs through ternary complexation with a
Np-functionalised multivalent copolymer to form well-defined
nanoparticle–polymer composites in the bulk. This work
provides a platform for coupling water-based supramolecular
chemistry with gold nanoparticle science using CB[8] host–
guest complexation.
17 H. D. Nguyen, D. T. Dang, J. L. van Dongen and L. Brunsveld,
Angew. Chem. Int. Ed., 2010, 49, 895–898.
18 F. Tian, N. Cheng, N. Nouvel, J. Geng and O. A. Scherman,
Langmuir, 2010, 26, 5323–5328.
19 N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547–1562.
20 S. D. Brown, P. Nativo, J. A. Smith, D. Stirling, P. R. Edwards,
B. Venugopal, D. J. Flint, J. A. Plumb, D. Graham and
N. J. Wheate, J. Am. Chem. Soc., 2010, 132, 4678–4684.
21 N. R. Jana and X. Peng, J. Am. Chem. Soc., 2003, 125,
14280–14281.
22 H. J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto,
K. Yamaguchi and K. Kim, Angew. Chem., Int. Ed., 2001, 40,
1526–1529.
23 W. S. Jeon, H. J. Kim, C. Lee and K. Kim, Chem. Commun., 2002,
1828–1829.
c
166 Chem. Commun., 2011, 47, 164–166
This journal is The Royal Society of Chemistry 2011