Organic Letters
Letter
16463. (f) Gnaim, S.; Green, O.; Shabat, D. Chem. Commun. 2018,
54, 2073−2085.
(16) Giri, B. P. U.S. Pat. Appl. Publ. (2004), US 20040077018 A1
20040422.
(17) AMPD derivatives decompose upon heating to give the
corresponding methyl 3-hydroxybenzoate and 2-adamantanone (see,
ref 3b). The thermal stability of 1 and 2 in C6D6 was examined at 60
°C, and production of the corresponding methyl 3-hydroxybenzoate 3
(3) (a) Schaap, A. P.; Gagnon, S. D. J. Am. Chem. Soc. 1982, 104,
3504−3506. (b) Schaap, A. P.; Chen, T.-S.; Handley, R. S.; DeSilva,
R.; Giri, B. P. Tetrahedron Lett. 1987, 28, 1155−1158. (c) Schaap, A.
P.; Handley, R. S.; Giri, B. P. Tetrahedron Lett. 1987, 28, 935−938.
(d) Schaap, A. P.; Akhavan, H.; Romano, L. J. Clin. Chem. 1989, 35,
1863−1864. (e) Adam, W.; Bronstein, I.; Edwards, B.; Engel, T.;
Reinhardt, D.; Schneider, F. W.; Trofimov, A.; Vasil’ev, R. F. J. Am.
Chem. Soc. 1996, 118, 10400−10407. (f) Trofimov, A. V.; Mielke, K.;
Vasil’ev, R. F.; Adam, W. Photochem. Photobiol. 1996, 63, 463−467.
(g) Adam, W.; Bronstein, I.; Trofimov, A. V. J. Phys. Chem. A 1998,
102, 5406−5414. (h) Adam, W.; Bronstein, I.; Trofimov, A. V.;
Vasil'ev, R. F. J. Am. Chem. Soc. 1999, 121, 958−961. (i) Matsumoto,
M.; Arai, N.; Watanabe, N. Tetrahedron Lett. 1996, 37, 8535−8538.
(j) Turan, I. S.; Akkaya, E. U. Org. Lett. 2014, 16, 1680−1683.
(k) Turan, I. S.; Seven, O.; Ayan, S.; Akkaya, E. U. ACS Omega 2017,
2, 3291−3295. (l) Bastos, E. L.; da Silva, S. M.; Baader, W. J. J. Org.
Chem. 2013, 78, 4432−4439.
1
Information). After heating of 1 in C6D6 at 60 °C for 30 h, 3 was
obtained in 88% yield (Figure S7 in Supporting Information). On the
other hand, the thermal decomposition of 2 afforded 4 in 32% and
63% yields at 30 h and 75 h, respectively. Interestingly, the results
indicate that the introduction of the acetamido group at the ortho
position of the phenolic hydroxy group increases the thermal stability.
(18) Stock solutions of 1 and 2 were prepared in MeCN containing
0.1% AcOH as an additive for stabilization. Namely, the solvent
system used in CL studies was MeCN/100 mM buffer = 1/9 (v/v)
containing 0.01% AcOH.
(19) The CL spectra of 1 and 2 in MeCN/100 mM Tris buffer (pH
8.9) = 1/9 (v/v) containing 0.01% AcOH at 25 °C are shown in
Figure S8 in the Supporting Information. The emission maxima of 1
and 2 at pH 8.9 were observed at ca. 460 nm and ca. 455 nm,
respectively.
(20) Although the fluorescence quantum yields of 3 and 4 in
aqueous solution should be quite low (see, ref 5), their fluorescence
emission spectra in MeCN/100 mM carbonate buffer pH 11.0 = 1/9
(v/v) suggest that the efficiencies of 3 and 4 are roughly similar
(Figure S9b in Supporting Information). However, it should be kept
in mind that the fluorescence emission maximum of the deprotonated
form of 3 in aqueous solution is observed at ca. 415 nm, which is ca.
50 nm shorter wavelength than the CL emission maximum of 1 in the
same solvent, although the CL-emitting species of 1 should be 3 (see,
ref 3g).
(21) In contrast to the low fluorescence efficiency of 3 and 4 in
aqueous media, both 3 and 4 exhibit strong fluorescence emission in
MeCN in the presence of TBAF as a base (Figure S10 in Supporting
Information). The emission maxima of 3 and 4 were observed at ca.
468 nm and ca. 455 nm, respectively. In MeCN, the fluorescence
quantum yield of 4 under the same conditions was determined to be
0.53 which is ca. 1.8-fold higher that of 3.
(22) The CL kinetic profiles of 2 (Figure 3) appear to show biphasic
decay, especially at pH 8.0. Although the acetamido group on 2 may
affect the chemiexcited state, the mechanism of CL remains unclear.
(23) Although 1,2-dioxetane molecules exhibit strong light emission
in organic solvents, their CL efficiencies markedly decrease in aqueous
solutions due to the quenching effect of H2O molecules (see, refs 2f,
3e, and 3i).
(24) Relative chemiluminescence quantum yield of 2 was
determined based on the value for 1 (ΦCL = 7.5 × 10−6) (see
refs3e,3i and 4b).
(25) (a) Hananya, N.; Reid, J. P.; Green, O.; Sigman, M. S.; Shabat,
D. Chem. Sci. 2019, 10, 1380−1385. (b) Watanabe, N.; Motoyama,
T.; Matsumoto, Y.; Matsumoto, M. ITE Letters on Batteries, New
Technologies & Medicine 2004, 5, 581−584. (c) Wang, N. Y.; Hu, R.
C. US Patent 5,603,868, 1997.
(26) (a) Watanabe, N.; Kino, H.; Watanabe, S.; Ijuin, H. K.;
Yamada, M.; Matsumoto, M. Tetrahedron 2012, 68, 6079−6087.
(c) Hananya, N.; Eldar Boock, A.; Bauer, C. R.; Satchi-Fainaro, R.;
Shabat, D. J. Am. Chem. Soc. 2016, 138, 13438−13446.
(4) (a) Matsumoto, M.; Watanabe, N.; Kasuga, N. C.; Hamada, F.;
Tadokoro, K. Tetrahedron Lett. 1997, 38, 2863−2866. (b) Matsumoto,
M.; Sakuma, T.; Watanabe, N. Tetrahedron Lett. 2002, 43, 8955−
8958. (c) Matsumoto, M. J. Photochem. Photobiol., C 2004, 5, 27−53.
(d) Matsumoto, M.; Watanabe, N. Bull. Chem. Soc. Jpn. 2005, 78,
1899−1920. (e) Matsumoto, M.; Watanabe, N.; Hoshiya, N.; Ijuin,
H. K. Chem. Rec. 2008, 8, 213−228.
(5) Green, O.; Eilon, T.; Hananya, N.; Gutkin, S.; Bauer, C. R.;
Shabat, D. ACS Cent. Sci. 2017, 3, 349−358.
(6) (a) Cao, J.; Lopez, R.; Thacker, J. M.; Moon, J. Y.; Jiang, C.;
Morris, S. N. S.; Bauer, J. H.; Tao, P.; Mason, R. P.; Lippert, A. R.
Chem. Sci. 2015, 6, 1979−1985. (b) Richard, J.-A.; Jean, L.; Romieu,
A.; Massonneau, M.; Noack-Fraissignes, P.; Renard, P.-Y. Org. Lett.
2007, 9, 4853−4855. (c) Liu, L.; Mason, R. P. PLoS One 2010, 5,
No. e12024. (d) Cao, J.; Campbell, J.; Liu, L.; Mason, R. P.; Lippert,
A. R. Anal. Chem. 2016, 88, 4995−5002. (e) An, W.; Mason, R. P.;
Lippert, A. R. Org. Biomol. Chem. 2018, 16, 4176−4182.
(7) (a) Green, O.; Gnaim, S.; Blau, R.; Eldar-Boock, A.; Satchi-
Fainaro, R.; Shabat, D. J. Am. Chem. Soc. 2017, 139, 13243−13248.
(b) Roth-Konforti, M.; Bauer, C.; Shabat, D. Angew. Chem. 2017, 129,
15839−15844. (c) Eilon-Shaffer, T.; Roth-Konforti, M.; Eldar-Boock,
A.; Satchi-Fainaro, R.; Shabat, D. Org. Biomol. Chem. 2018, 16, 1708−
1712.
(8) (a) Ryan, L. S.; Lippert, A. R. Angew. Chem., Int. Ed. 2018, 57,
622−624. (b) Cao, J.; An, W.; Reeves, A. G.; Lippert, A. R. Chem. Sci.
2018, 9, 2552−2558.
(9) (a) Ueyama, N.; Nishikawa, N.; Yamada, Y.; Okamura, T.;
Nakamura, A. J. Am. Chem. Soc. 1996, 118, 12826−12827. (b) Suzuki,
N.; Higuchi, T.; Urano, Y.; Kikuchi, K.; Uekusa, H.; Ohashi, Y.;
Uchida, T.; Kitagawa, T.; Nagano, T. J. Am. Chem. Soc. 1999, 121,
11571−11572.
(10) (a) Kanamori, D.; Yamada, Y.; Onoda, A.; Okamura, T.;
Adachi, S.; Yamamoto, H.; Ueyama, N. Inorg. Chim. Acta 2005, 358,
331−338. (b) Kanamori, D.; Furukawa, A.; Ueyama, N. Org. Biomol.
Chem. 2005, 3, 1453−1459.
(11) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165−195.
(12) Watanabe, N.; Matsumoto, Y.; Matsumoto, M. Tetrahedron
Lett. 2005, 46, 4871−4874.
(13) The solvent conditions used for UV−vis measurements were
MeCN/100 mM buffer 1/9 (v/v) containing 0.01% AcOH. The same
conditions were used in CL studies.
(14) Hibbert, F.; Mills, J. F.; Nyburg, S. C.; Parkins, A. W. J. Chem.
Soc., Perkin Trans. 2 1998, 629−634.
(15) The energy calculation study of the neutral form of 4 suggested
that the conformer forming an intramolecular OH···O hydrogen bond
between the hydroxy group of the phenolic moiety and the carbonyl
oxygen of the amide is more stable than that forming an
intramolecular NH···O hydrogen bond (Figure S3b in Supporting
Information).
E
Org. Lett. XXXX, XXX, XXX−XXX