Please do not adjust margins
Green Chemistry
Page 10 of 11
DOI: 10.1039/C5GC02865E
ARTICLE
Journal Name
13 M. Sankar, N. Dimitratos, D. W. Knight, A. F. Carley, R.
Tiruvalam, C. J. Kiely, D. Thomas and G. J. Hutchings,
ChemSusChem, 2009, 2, 1145–1151.
14 N. Dimitratos, F. Porta and L. Prati, Appl. Catal. A Gen., 2005,
291, 210–214.
15 C. L. Bianchi, P. Canton, N. Dimitratos, F. Porta and L. Prati,
Catal. Today, 2005, 102–103, 203–212.
16 R. Garcia, M. Besson and P. Gallezot, Appl. Catal. A Gen.,
1995, 127, 165–176.
17 S. D. Pollington, D. I. Enache, P. Landon, S.
Meenakshisundaram, N. Dimitratos, A. Wagland, G. J.
Hutchings and E. H. Stitt, Catal. Today, 2009, 145, 169–175.
18 S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G. J.
Hutchings, Chem. Commun., 2002, 696–697.
19 D. Liang, J. Gao, J. Wang, P. Chen, Z. Hou and X. Zheng, Catal.
Commun., 2009, 10, 1586–1590.
20 W. Hu, B. Lowry and A. Varma, Appl. Catal. B Environ., 2011,
106, 123–132.
21 W. Hu, D. Knight, B. Lowry and A. Varma, Ind. Eng. Chem.
Res., 2010, 49, 10876–10882.
22 H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi and Y. Inaya,
Appl. Catal. A Gen., 1993, 96, 217–228.
23 H. Kimura, Appl. Catal. A Gen., 1993, 105, 147–158.
24 A. Nirmala Grace and K. Pandian, Electrochem. Commun.,
2006, 8, 1340–1348.
25 Y. Shen, S. Zhang, H. Li, Y. Ren and H. Liu, Chem. Eur. J., 2010,
16, 7368–7371.
26 G. L. Brett, Q. He, C. Hammond, P. J. Miedziak, N. Dimitratos,
M. Sankar, A. A. Herzing, M. Conte, J. A. Lopez-Sanchez, C. J.
Kiely, D. W. Knight, S. H. Taylor and G. J. Hutchings, Angew.
Chem., 2011, 123, 10318–10321.
Conclusions
In this study, we investigated the highly selective
electrooxidation of glycerol to DHA by controlling the
electrode potential in an electrocatalytic reactor. The
selectivity of the observed products was strongly dependent
on the applied potential and catalyst surface composition.
Under the optimized conditions, PtSb/C served as an efficient
electrocatalyst in terms of a high DHA yield of 61.4% with
90.3% glycerol conversion at 0.797 V (vs. SHE). The structural
and electronic changes of the active Pt sites by adjacent Sb
atoms may lead to improvement in the selectivity to the target
products. Furthermore, we investigated the relationship
between the applied electrode potential and the selectivity for
glycerol oxidation under acidic conditions, and the results
indicated that higher anode potentials promote C–C bond
breaking. The electrocatalytic reactor produced a high TOF and
DHA selectivity compared to a non-electrocatalytic reactor
that uses an O2 oxidant. These results may be applied to the
design of a catalytic system for the efficient transformation of
biomass-derived oxygenated molecules in an electrocatalytic
process in the future. Along with the detailed kinetics of the
reaction, a study of the selectivity of intermediate products
over the catalysts in a continuous flow electrocatalytic system
is currently ongoing.
27 J. Xu, H. Zhang, Y. Zhao, B. Yu, S. Chen, Y. Li, L. Hao and Z. Liu,
Green Chem., 2013, 15, 1520–1525.
Acknowledgements
28 N. Dimitratos, A. Villa and L. Prati, Catal. Lett., 2009, 133
334–340.
,
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP)
(no. 2014R1A2A1A11052414).
29 A. Villa, G. M. Veith and L. Prati, Angew. Chem., 2010, 122
4601–4604.
,
30 D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou and X. Zheng, Appl.
Catal. B Environ., 2011, 106, 423–432.
31 M. Simões, S. Baranton and C. Coutanceau, Appl. Catal. B
Environ., 2011, 110, 40–49.
32 Z. Zhang, L. Xin and W. Li, Appl. Catal. B Environ., 2012, 119–
120, 40–48.
33 H. Wang, L. Thia, N. Li, X. Ge, Z. Liu and X. Wang, Appl. Catal.
B Environ., 2015, 166–167, 25–31.
34 H. J. Kim, J. Lee, S. K. Green, G. W. Huber and W. B. Kim,
Notes and references
1
2
3
4
5
6
B. D. McNicol, D. A. J. Rand and K. R. Williams, J. Power
Sources, 1999, 83, 15–31.
J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.
Int. Ed., 2007, 46, 7164–7183.
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107
2411–2502.
T. P. Vispute, H. Zhang, A. Sanna, R. Xiao and G. W. Huber,
Science, 2010, 330, 1222–1227.
C.-H. Zhou, J. N. Beltramini, Y.-X. Fan and G. Q. Lu, Chem.
Soc. Rev., 2008, 37, 527–549.
B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P.
Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul
and F. Dumeignil, Green Chem., 2011, 13, 1960.
,
ChemSusChem, 2014,
35 Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez and M. T. M.
Koper, ACS Catal., 2012, , 759–764.
7, 1051–1056.
2
36 S. K. Green, J. Lee, H. J. Kim, G. A. Tompsett, W. B. Kim and G.
W. Huber, Green Chem., 2013, 15, 1869.
37 X. Yu and P. G. Pickup, J. Power Sources, 2011, 196, 7951–
7956.
38 R. Nie, D. Liang, L. Shen, J. Gao, P. Chen and Z. Hou, Appl.
Catal. B Environ., 2012, 127, 212–220.
39 S. Lee, H. J. Kim, S. M. Choi, M. H. Seo and W. B. Kim, Appl.
Catal. A Gen., 2012, 429-430, 39–47.
40 C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H.
7
8
9
S. E. Davis, M. S. Ide and R. J. Davis, Green Chem., 2012, 15,
17–45.
M. Simões, S. Baranton and C. Coutanceau, ChemSusChem,
2012, 5, 2106–2124.
M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C. Della
Pina, Angew. Chem. Int. Ed., 2007, 46, 4434–4440.
Raymond and L. H. Gale, Surf. Interface Anal., 1981, 3, 211–
225.
10 W. R. Davis, J. Tomsho, S. Nikam, E. M. Cook, D. Somand and
J. A. Peliska, Biochemistry, 2000, 39, 14279–14291.
11 N. Worz, A. Brandner and P. Claus, J. Phys. Chem. C, 2010,
114, 1164–1172.
12 R. Ciriminna, G. Palmisano, C. D. Pina, M. Rossi and M.
Pagliaro, Tetrahedron Lett., 2006, 47, 6993–6995.
41 M. Newville, J. Synchrotron Radiat., 2001, 8, 322–324.
42 B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12
537–541.
43 V. Radmilovic, H. A. Gasteiger and P. N. Ross, J. Catal., 1995,
154, 98–106.
,
44 M. Simões, S. Baranton and C. Coutanceau, Electrochimica
Acta, 2010, 56, 580–591.
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins