Organic Letters
Letter
ORCID
followed by insertion of an alkyne, resulted in the eight-
membered ring oxarhenacycle intermediate C. The terminal
alkenyl carbon of 1a selectively attacked the methyl-group-
substituted carbon atom of an alkyne, which proceeded via a C−
H activation/insertion mechanism, not a Friedel−Crafts-type
electrophilic alkenylation mechanism. Reductive elimination
then afforded 2-dienylphenol intermediates, which finally
converted into 2H-chromene 2a via a 1,7-H shift followed by
oxa-6π-electrocyclization of ortho-quinone methide intermedi-
ate D.20,21
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was financially supported by a Grant-in-Aid for
Scientific Research (No. 18H03911) from MEXT, Japan.
■
Three-component coupling of phenol and two different
alkynes via [3 + 2 + 1] cycloaddition was examined to
demonstrate the utility of the present 2H-chromene synthesis.
The expected multiple-substituted chromene derivative 4 was
obtained in 75% yield by sequential treatment of two different
alkynes (eq 5). Addition of a catalytic amount of (μ-phenoxo)
rhenium complex 3a along with treatment of the second alkyne
greatly promoted the formation of 2H-chromene.
REFERENCES
■
(1) (a) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier: 1996.
(b) Yamaguchi, M. In The Chemistry of Phenols; Rappoport, Z., Ed.;
John Wiley & Sons, Ltd.: Chichester, 2003; pp 661−712.
(2) (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc.
1995, 117, 1151. (b) Yamaguchi, M.; Arisawa, M.; Kido, Y.; Hirama, M.
Chem. Commun. 1997, 1663. (c) Yamaguchi, M. Pure Appl. Chem. 1998,
70, 1091.
(3) For catalytic C-alkenylation of unprotected phenol derivatives,
see: (a) Kobayashi, K.; Yamaguchi, M. Org. Lett. 2001, 3, 241.
(b) Trost, B. M.; Toste, F. D.; Greenman, K. Atom Economy. J. Am.
Chem. Soc. 2003, 125, 4518. (c) Nevado, C.; Echavarren, A. M. Chem. -
Eur. J. 2005, 11, 3155. (d) Yadav, J. S.; Subba Reddy, B. V.; Gupta, M.
K.; Dash, U.; Pandey, S. K. Synlett 2007, 2007, 809. (e) Yadav, J. S.;
Subba Reddy, B. V.; Sengupta, S.; Biswas, S. K. Synthesis 2009, 2009,
1301. (f) Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.;
Marinelli, F. Org. Biomol. Chem. 2012, 10, 9700. (g) Rao, V. K.; Shelke,
G. M.; Tiwari, R.; Parang, K.; Kumar, A. Org. Lett. 2013, 15, 2190.
(h) Nemoto, T.; Matsuo, N.; Hamada, Y. Adv. Synth. Catal. 2014, 356,
2417.
In conclusion, a facile and practical method for ortho-
alkenylation of phenols with complete site selectivity and
regioselectivity was achieved using a rhenium catalyst. In
contrast to classic Friedel−Crafts electrophilic functionalization
(proceeding with ortho- and para-orientation to yield a mixture
of mono- and multisubstituted adducts), reaction occurred
selectively at the position ortho to the phenolic hydroxy group,
providing selectively monoalkenylated phenols. Although a high
temperature was required, these reactions proceeded with
readily available starting materials under neutral conditions
without additional ligands. These reaction schemes offer new
insights into the reactivity of phenols and expand their potential
as a readily available inexpensive chemical feedstock for
synthesis of biologically active molecules.
(4) (a) Camacho, D. H.; Saito, S.; Yamamoto, Y. Tetrahedron Lett.
2002, 43, 1085. (b) Kuram, M. R.; Bhanuchandra, M.; Sahoo, A. K. J.
́
́
Org. Chem. 2010, 75, 2247. (c) Oonishi, Y.; Gomez-Suarez, A.; Martin,
A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2013, 52, 9767.
(5) The type of catalytic C−H bond functionalization possible for
unprotected phenol derivatives is limited. 2-Arylphenols were used as
substrates in most reactions. For representative examples, see:
(a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem. Lett. 1997,
26, 1103. (b) Dorta, R.; Togni, A. Chem. Commun. 2003, 760. (c) Xiao,
B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am.
Chem. Soc. 2011, 133, 9250. (d) Seoane, A.; Casanova, N.; Quin
N.; Mascarenas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 7607.
̃
ones,
̃
(e) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem.
Soc. 2014, 136, 6904.
(6) For reviews, see: (a) Kuninobu, Y.; Takai, K. Chem. Rev. 2011,
111, 1938. (b) Mao, G.; Huang, Q.; Wang, C. Eur. J. Org. Chem. 2017,
2017, 3549. For our recent contribution, see: (c) Hori, S.; Murai, M.;
Takai, K. J. Am. Chem. Soc. 2015, 137, 1452. (d) Nakagiri, T.; Murai,
M.; Takai, K. Org. Lett. 2015, 17, 3346. (e) Murai, M.; Uemura, E.;
Hori, S.; Takai, K. Angew. Chem., Int. Ed. 2017, 56, 5862. (f) Murai, M.;
Uemura, E.; Takai, K. ACS Catal. 2018, 8, 5454. (g) Murai, M.; Ogita,
T.; Takai, K. Chem. Commun. 2019, 55, 2332.
(7) For rhenium-catalyzed ortho selective alkylation of phenols, see:
(a) Kuninobu, Y.; Matsuki, T.; Takai, K. J. Am. Chem. Soc. 2009, 131,
9914. (b) Kuninobu, Y.; Yamamoto, M.; Nishi, M.; Yamamoto, T.;
Matsuki, T.; Murai, M.; Takai, K. Org. Synth. 2017, 94, 280.
(8) For alkenylation under the conditions shown below, a 74% yield of
[Re(OPh)(CO)3(thf)]2 3a was obtained based on the Re2(CO)10
employed. This result suggested that 2 equiv of phenol derivatives
relative to Re2(CO)10 were consumed for the formation of (μ-phenoxo)
rhenium complex 3a, and did not participate in the catalytic
alkenylation.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, spectroscopic data for all new
compounds, and copies of H and 13C NMR spectra
1
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
D
Org. Lett. XXXX, XXX, XXX−XXX