1
4
enolates would provide an efficient method. We have recently
developed zirconium-catalyzed enantioselective Mannich-
type reactions, and other groups have also reported metal-
min. The yield was dramatically improved, and the desired
adduct was obtained in 92% yield with 94% ee.
4
Several examples of the Mannich-type reactions are shown
in Table 2. N-Acetylimino ester 2b also reacted smoothly to
afford the desired adduct in high yield with excellent ee.
For N-benzoylimino ester 2c, the use of Cu(OTf)
only gave a low ee (58% yield, 14% ee). In this substrate,
high ee’s were obtained when CuClO ‚4CH CN-(S)-xylyl-
BINAP was used as the catalyst (Table 2, entries 6-9). As
for enolate components, silyl enol ethers derived from
ketones, an ester, and a thioester worked well. Moreover, it
is noted that an alkyl vinyl ether also reacted smoothly to
afford the corresponding N-acylated amino acid derivatives
in high yields with excellent ee’s. In the reaction of the alkyl
catalyzed asymmetric Mannich-type reactions of R-imino
5
esters. In these reactions, however, the N-protected groups
6
of the products have to be removed and then acylated. More
2
-ligand 3e
conveniently, N-acylimino esters would react with enolates
to afford N-acylated amino acid derivatives directly. How-
ever, the starting materials, N-acylimino esters, are known
to be unstable in several cases, and their use in organic
synthesis has been limited. In this Letter, we report the first
enantioselective Mannich-type reactions of N-acylimino
esters using a chiral copper catalyst. Efficient synthesis of
HPA-12 using this reaction is also described.
4
3
We have quite recently developed a convenient preparation
method of N-acylimino esters using a polymer-supported
(3) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
7
(4) (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997,
amine. According to this method, N-acylimino ester 2a was
1
1
19, 7153. (b) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc.
998, 120, 431. (c) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 8180. (d) Kobayashi, S.; Ishitani, H.; Yamashita, Y.; Ueno,
M.; Shimizu, H. Tetrahedron 2001, 57, 861.
8
prepared from the corresponding R-chloroglycine derivative,
and the Mannich-type reaction with the silyl enol ether
derived from acetophenone was examined using a chiral
catalyst. After screening various metals and chiral ligands,
(5) (a) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998,
120, 2474. (b) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem.
Soc. 1998, 120, 4548. (c) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J.,
III.; Dudding, T.; Lectka, T. J. Org. Chem. 1998, 63, 6090. (d) Fujii, A.;
Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. (e) Ferraris,
D.; Dudding, T.; Young, B.; Drury, W. J., III; Lectka, T. J. Org. Chem.
999, 64, 2168. (f) Ferraris, D.; Young, B.; Dudding, T.; Drury, W. J., III.;
Lectka, T. Tetrahedron 1999, 55, 8869. (g) Juhl, K.; Gathergood, N.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995.
it was revealed that a chiral copper catalyst prepared from
9
Cu(OTf)
2
and chiral ligand 3e was effective. The effects of
chiral ligands and reaction conditions are summarized in
1
Table 1. When CuClO ‚4CH
4
3
CN10 was combined with (S)-
(
6) Quite recently, we have completed the first asymmetric synthesis of
HPA-12. See ref 16.
7) Kobayashi, S.; Kitagawa, H.; Matsubara, R. J. Comb. Chem. 2001,
, 401.
8) N-Acyl-R-chloroglycine ethyl esters were readily prepared from
(
Table 1. Effect of Chiral Ligands and Reaction Conditions
3
(
N-acyl-R-hydroxyglycine ethyl esters by treatment with SOCl2. For the
preparation of N-acyl-R-hydroxyglycine ethyl esters, see: Schmitt, M.;
Bourguignon, J.; Barlin, G. B.; Davies, L. P. Aust. J. Chem. 1997, 50, 719.
See also: Kober, R.; Steglich, W. Liebigs Ann. Chem. 1983, 599.
(9) (a) Mimoun, H.; Laumer, J. Y. S.; Giannini, L.; Scopelliti, R.; Floriani,
C. J. Am. Chem. Soc. 1999, 121, 6158. (b) Cavallo, L.; Cucciolito, M. E.;
Martino, A. D.; Giordano, F.; Orabona, I.; Vitagliano, A. Chem. Eur. J.
2
000, 6, 1127, and references therein.
10) For the preparation of CuClO4‚4CH3CN, see: Kubas, G. J. Inorganic
Synthesis; Shriver, D. F., Ed.; Plenum: New York, 1979; Vol. XIX, p 90.
11) Provided from Takasago Chemical Co. Ltd. For the preparation of
(
(
xylyl-BINAP, see: Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.;
Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa,
S.; Takaya, H. J. Org. Chem. 1994, 59, 3064. The use of xylyl-BINAP,
see, for example: Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa,
M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1998, 120, 13529.
(
12) For the use of the Cu-BINAP system in enantioselective reactions
of R-imino esters, see: (a) Drury, W. J., III; Ferraris, D.; Cox, C.; Young,
B.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 11006. (b) Yao, S.; Johannsen,
M.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 1998, 37, 3121.
(c) Yao, S.; Fang, X.; Jørgensen, K. A. Chem. Commun. 1998, 2547. (d)
Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.; Hazell, R. G.; Jørgensen,
K. A. J. Org. Chem. 1999, 64, 4844. (e) Juhl, K.; Hazell, R. G.; Jørgensen,
K. A. J. Chem. Soc., Perkin Trans. 1 1999, 2293. (f) Johannsen, M. Chem.
Commun. 1999, 2233. (g) Saaby, S.; Fang, X.; Gathergood, N.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2000, 39, 4114. (h) Yao, S.; Saaby, S.; Hazell,
R. G.; Jørgensen, K. A. Chem. Eur. J. 2000, 6, 2435. (i) Knudsen, K. R.;
Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem.
Soc. 2001, 123, 5843. (j) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. Cf. (k) Kr u¨ ger,
J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837.
a
S)-(-)-Bis[bis(3,5-dimethylphenyl)phosphino]-1,1′-binaphthyl. b 0 °C.
1-13
(
xylyl-BINAP1
and used as a catalyst, a low enantiomeric
excess (ee) was obtained. On the other hand, in the presence
of Cu(OTf) and ligand 3e (10 mol %), 2a and the silyl enol
2
(13) For other chiral Cu-catalyzed reactions, see, for example: (a) Evans,
ether were added successively to afford the desired adduct
in 80% ee, but in low yield. In this case, formation of a
dimer of 2a was observed, presumably due to contamination
by water. We carefully performed the reaction under
anhydrous conditions, and the silyl enol ether was added to
the catalyst first and then 2a was slowly charged over 20
D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. J. Am.
Chem. Soc. 2000, 122, 7936-7943. (b) Johnson, J. S.; Evans, D. A. Acc.
Chem. Res. 2000, 33, 325. (c) Bromidge, S.; Wilson, P. C.; Whiting, A.
Tetrahedron Lett. 1998, 39, 8905. (d) Jnoff, E.; Ghosez, L. J. Am. Chem.
Soc. 1999, 121, 2617. (e) Audrain, H.; Jørgensen, K. A. J. Am. Chem. Soc.
2000, 122, 11543. (f) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J.
Am. Chem. Soc. 2000, 122, 12517.
(14) Experimental details are shown in Supporting Information.
144
Org. Lett., Vol. 4, No. 1, 2002