Journal of the American Chemical Society
COMMUNICATION
which reveals a nonlinear gain and a threshold characteristic of
a laser. To verify the TPP laser action above the threshold, we
measured the PL decay profiles at different pump energies,
which indicate that the PL lifetime gradually decreases as the
pumped power increases (below the threshold) and sharply
falls to 0.58 ns at 60 nJ (above the threshold), as shown in
Figure 4B. These results demonstrate that the resonance of EPs
not only plays an important role in light propagation but also
leads to the interference and enhancement of PL emission in
the nanowires as miniaturized optical microcavties. The quality
factor Q in this microcavity is as high as 57.0, attributed to the
optically flat surface and the existence of EPs, which agrees well
with the estimation from end facet reflectivity, Q = 2nπ/λγ =
60.1. The nanowires show great potential in fabricating laser
devices, considering its relatively high Q-factor among organic
nanostructures. The significant spectral line narrowing (fwhm
= 2.9 nm), the existence of laser cavity resonances, the
clear indication of a threshold (Eth = 60 nJ), and the short
emission lifetime above threshold (τ = 0.58 ns) verify the TPP
lasing in this kind of organic single-crystalline nanowire EP
resonators.
’ AUTHOR INFORMATION
Corresponding Author
yszhao@iccas.ac.cn; jnyao@iccas.ac.cn
’ ACKNOWLEDGMENT
This work was supported by National Natural Science Foun-
dation of China (Nos. 51073164, 91022022), the Chinese
Academy of Sciences, and the National Basic Research 973
Program of China.
’ REFERENCES
(1) He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008,
108, 1245–1330.
(2) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt,
J. C.; Kannan, R.; Yuan, L. X.; He, G. S.; Prasad, P. N. Chem. Mater. 1998,
10, 1863–1874.
(3) O’Carroll, D.; Lieberwirth, I.; Redmond, G. Nat. Nanotechnol.
2007, 2, 180–184.
Organic nanowires, as typical optical waveguiding structures,
can lead to FP-type PL modulation and some properties of laser
light because waveguides are common laser geometry.23 The
interaction between photons and excitons is determined by the
ratio of the oscillator strength to the mode volume. Therefore, it
is the very high oscillator strength of the Frenkel excitons rather than
any cavity effect that causes EPs to exist in the presented DPBT
nanowires. Although the distinctions between polariton-type and
photon-type lasing remain subtle in organic nanostructures,24,25 the
existence of EPs should play an essential role in optical waveguiding
and TPP lasing according to our experiments. In agreement with
calculation from the EP model in selected DPBT nanowires, the
strong dispersion and resonance of EP leads to an efficient optical
gain around 475 nm in the microcavity. In our experiments, TPP
lasing in the EP resonators can only be pumped at low tempera-
ture. However, this kind of model TPP nanolaser device based on
EP effects in organic waveguides might provide enlightenment
for other organic EP devices and find application in miniaturized
photonics integrations.
(4) Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Xiao, D. B.; Yao, J. N.
Adv. Mater. 2008, 20, 2859–2876.
(5) Zhao, Y. S.; Wu, J. S.; Huang, J. X. J. Am. Chem. Soc. 2009,
131, 3158–3159.
(6) Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Nano Lett.
2005, 5, 1293–1296.
(7) Jiang, L.; Fu, Y. Y.; Li, H. X.; Hu, W. P. J. Am. Chem. Soc. 2008,
130, 3937–3941.
(8) Hopfield, J. J.; Thomas, D. G. Phys. Rev. Lett. 1965, 15, 22–25.
(9) Andreani, L. C.; Panzarini, G.; Gerard, J. M. Phys. Rev. B 1999,
60, 13276–13279.
(10) Chaudhuri, D.; Li, D.; Che, Y.; Shafran, E.; Gerton, J. M.; Zang,
L.; Lupton, J. M. Nano Lett. 2011, 11, 488–492.
(11) Takazawa, K.; Inoue, J.; Mitsuishi, K.; Takamasu, T. Phys. Rev.
Lett. 2010, 105, 067401.
(12) van Vugt, L. K.; Ruhle, S.; Ravindran, P.; Gerritsen, H. C.;
Kuipers, L.; Vanmaekelbergh, D. Phys. Rev. Lett. 2006, 97, 147401.
(13) Gao, F.; Liao, Q.; Xu, Z. Z.; Yue, Y. H.; Wang, Q.; Zhang, H. L.;
Fu, H. B. Angew. Chem., Int. Ed. 2010, 49, 732–735.
(14) Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Liao, Q.; Yao, J. N.
Acc. Chem. Res. 2010, 43, 409–418.
In conclusion, single-crystalline nanowires were prepared
from an organic TPA compound, DPBT, via surfactant-assisted
self-assembly in aqueous solution. These nanowires can serve as
EP resonators at 77 K because of the increased stability of the
strong coupling between photons and Frenkel excitons. Single-
nanowire TPP lasing was observed around 475 nm, pumped with
a 750 nm pulse laser above a threshold of 60 nJ. The low driving
power can be attributed to the EP resonance in the nanowire
microcavity. The Q factor in this microcavity is as high as 57.0
because of the optically flat surfaces and the existence of EPs in
the nanostructures. This approach to organic crystalline TPP
nanolasers in 1D organic nanostructures may lead to a new series
of upconverted organic photonic devices.26
(15) Yan, R. X.; Gargas, D.; Yang, P. D. Nat. Photon. 2009, 3, 569–576.
(16) Fu, L. M.; Wen, X. F.; Ai, X. C.; Sun, Y.; Wu, Y. S.; Zhang, J. P.;
Wang, Y. Angew. Chem., Int. Ed. 2005, 44, 747–750.
(17) Yan, H. Q.; Johnson, J.; Law, M.; He, R. R.; Knutsen, K.;
McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. D. Adv. Mater. 2003,
15, 1907–1911.
(18) Lei, Y. L.; Liao, Q.; Fu, H. B.; Yao, J. N. J. Am. Chem. Soc. 2010,
132, 1742–1743.
(19) Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683–696.
(20) Sirbuly, D. J.; Law, M.; Yan, H. Q.; Yang, P. D. J. Phys. Chem. B
2005, 109, 15190–15213.
(21) van Vugt, L. K.; Piccione, B.; Agarwala, R. Appl. Phys. Lett. 2010,
97, 061115.
(22) Maslova, A. V.; Ning, C. Z. Appl. Phys. Lett. 2003, 83, 1237–1239.
(23) van Vugt, L. K.; Ru1hle, S.; Vanmaekelbergh, D. Nano Lett.
2006, 6, 2707–2711.
(24) Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y.
Science 2002, 298, 199–202.
(25) Zhao, Y. S.; Peng, A. D.; Fu, H. B.; Ma, Y.; Yao, J. N. Adv. Mater.
2008, 20, 1661–1665.
(26) Zhang, C.; Zheng, J. Y.; Zhao, Y. S.; Yao, J. N. Adv. Mater. 2011,
23, 1380–1384.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details; optical
b
characterization; discussion on EP model; AFM image and cross
section profile; TPA cross section of DPBT; and spatially
resolved spectra at the wire tip. This material is available free
7279
dx.doi.org/10.1021/ja200549v |J. Am. Chem. Soc. 2011, 133, 7276–7279