Communication
ChemComm
Mg2+ so as to promote the reaction efficiency.18 The result of
addition of a tertiary alkyl radical to 1-phenyl substituted allyl
carbonate (35% yield, Scheme S4, ESI†) further supports the
mechanistic proposal in eqn (2) that may involve a possible
SN20-type process.
A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan and P. S. Baran,
Science, 2017, 356, eaam 7335; ( f ) T. Qin, L. R. Malins, J. T. Edwads,
R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan,
M. D. Eastgate and P. S. Baran, Angew. Chem., Int. Ed., 2017, 56, 260.
4 (a) T. Suga and Y. Ukaji, Org. Lett., 2018, 20, 7846; (b) T. Suga,
S. Shimazu and Y. Ukaji, Org. Lett., 2018, 20, 5389; (c) X.-G. Jia,
P. Guo, J. Duan and X.-Z. Shu, Chem. Sci., 2018, 9, 640.
¨
5 (a) M. van Gemmeren, M. Borjesson, A. Tortajada, S.-Z. Sun, K. Okura
and R. Martin, Angew. Chem., Int. Ed., 2017, 56, 6558; (b) X. B. Yan,
C. L. Li, W. J. Jin, P. Guo and X.-Z. Shu, Chem. Sci., 2018, 9, 4529.
(2)
´
´
6 H. R. Dieguez, A. Lopez, V. Domingo, J. F. Arteaga, J. A. Dobado,
M. M. Herrador, J. F. Q. del Moral and A. F. Barrero, J. Am. Chem.
Soc., 2010, 132, 254.
7 For reviews on C–O bond couplings, see: (a) J. Cornella, C. Zarate
and R. Martin, Chem. Soc. Rev., 2014, 43, 8081; (b) B. Su, Z.-C. Cao
and Z.-J. Shi, Acc. Chem. Res., 2015, 48, 886; (c) S. M. Pound and
M. P. Watson, Chem. Commun., 2018, 54, 12286; (d) B. M. Rosen,
K. W. Quasdorf, D. A. Wilson, N. Zhang, A. M. Resmerita, N. K. Garg
and V. Percec, Chem. Rev., 2011, 111, 1346; (e) E. J. Tollefson,
L. E. Hanna and E. R. Jarvo, Acc. Chem. Res., 2015, 48, 2344;
( f ) E. Bisz and M. Szostak, ChemSusChem, 2017, 10, 3964.
8 (a) R. J. Christopher and L. E. Overman, Acc. Chem. Res., 2016,
49, 1578; (b) D. Rackl, V. Kais, E. Lutsker and O. Reiser, Eur. J. Org.
Chem., 2017, 2130.
9 (a) Y. Ye, H. Chen, J. L. Sessler and H. Gong, J. Am. Chem. Soc., 2019,
141, 820; (b) M. Gao, D. Sun and H. Gong, Org. Lett., 2019, 21, 1645.
10 (a) A. Joshi-Pangu, C.-Y. Wang and M. R. Biscoe, J. Am. Chem. Soc.,
2011, 133, 8478; (b) S. Thapa, A. Kafle, S. K. Gurung, A. Montoya,
P. Riedel and R. Giri, Angew. Chem., Int. Ed., 2015, 54, 8236;
(c) S. L. Zultanski and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 624;
(d) C.-Y. Huang and A. G. Doyle, J. Am. Chem. Soc., 2015, 137, 5638;
(e) J. J. Dunsford, R. Ewan, E. R. Clark and M. J. Ingleson, Angew.
Chem., Int. Ed., 2015, 54, 5688.
(3)
In summary, a new allylation protocol that afforded all C(sp3)
quaternary centers has been developed. The mild Fe-promoted
conditions are suitable for a wide set of unactivated tertiary alkyl
oxalates and allylic carbonates decorated with different substitu-
ents. MgCl2 not only serves as a Lewis-acid to promote reduction
of C–O bonds of oxalates to generate tertiary alkyl radicals as
described previously, but also plays a key role in allyl C–O bond
cleavage.
This work was financially supported by the Chinese NSF
(No. 21871173 and 21572127).
11 (a) J. Terao, H. Todo, S. A. Begum, H. Kuniyasu and N. Kambe, Angew.
Chem., Int. Ed., 2007, 46, 2086; (b) P. Ren, L. A. Stern and X. L. Hu,
Angew. Chem., Int. Ed., 2012, 51, 9110; (c) C.-T. Yang, Z.-Q. Zhang,
J. Liang, J.-H. Liu, X.-Y. Lu, H.-H. Chen and L. Liu, J. Am. Chem. Soc.,
2012, 134, 11124; (d) T. Iwasaki, H. Takagawa, S. P. Singh, H. Kuniyasu
and N. Kambe, J. Am. Chem. Soc., 2013, 135, 9604.
12 (a) A. M. Lauer, F. Mahmud and J. Wu, J. Am. Chem. Soc., 2011,
133, 9119; (b) X. Han, Y. Zhang and J. Wu, J. Am. Chem. Soc., 2010,
132, 4104; (c) B. Breit, P. Demel, D. Grauer and C. Studte, Chem. – Asian
J., 2006, 1, 586.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For reviews, see: (a) D. J. Weix, Acc. Chem. Res., 2015, 48, 1767; (b) J. Gu,
X. Wang, W. Xue and H. Gong, Org. Chem. Front., 2015, 2, 1411;
(c) C. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini and
J. A. von Wangelin, Chem. – Eur. J., 2014, 20, 6828; (d) T. Moragas, 13 (a) S. K. Ghorai, M. Jin, T. Hatakeyama and M. Nakamura, Org. Lett.,
´ ´
A. Correa and R. Martin, Chem. – Eur. J., 2014, 20, 8242; (e) J. Y. Nedelec,
2012, 14, 1066; (b) H. Someya, H. Ohmiya, H. Yorimitsu and
K. Oshima, Org. Lett., 2008, 10, 969; (c) Y. Mitamura, Y. Asada,
K. Murakami, H. Someya, H. Yorimitsu and K. Oshima, Chem. – Asian
J., 2010, 5, 1487; (d) T. Tsuji, H. Yorimitsu and K. Oshima, Angew.
Chem., Int. Ed., 2002, 41, 4137; (e) H. Ohmiya, T. Tsuji, H. Yorimitsu
and K. Oshima, Chem. – Eur. J., 2004, 10, 5640.
J. Perichon and M. Troupel, Top. Curr. Chem., 1997, 185, 141.
2 (a) R. M. Montero, V. R. Yatham, H. Yin, J. Davies and R. Martin,
Org. Lett., 2019, 21, 2947; (b) T. Moragas, M. Gaydou and R. Matrtin,
Angew. Chem., Int. Ed., 2016, 55, 5053; (c) H. Yue, C. Zhu, L. Shen,
Q. Geng, K. J. Hock, T. Yuan, L. Cavallo and M. Rueping, Chem. Sci.,
2019, 10, 4430; (d) J. Yi, S. O. Badir, L. M. Kammer, M. Ribagorda 14 H. F. Chen, X. Jia, Y. Y. Yu, Q. Qian and H. G. Gong, Angew. Chem.,
and G. A. Molander, Org. Lett., 2019, 21, 3346; (e) R. Mao, A. Frey, Int. Ed., 2017, 56, 13103.
J. Balon and X. Hu, Nat. Catal., 2018, 1, 120; ( f ) S. Ni, C.-X. Li, 15 (a) X. Qian, A. Auffrant, A. Felouat and C. Gosmini, Angew. Chem.,
Y. Mao, J. Han, Y. Wang, H. Yan and Y. Pan, Sci. Adv., 2019,
5, eaaw9516; (g) J. Liao, C. H. Basch, M. E. Hoerrner, M. R. Talley,
B. P. Boscoe, J. W. Tucker, M. R. Garnsey and M. P. Watson, Org.
Lett., 2019, 21, 2941; (h) C. H. Basch, J. Liao, J. Xu, J. J. Piane and
M. P. Watson, J. Am. Chem. Soc., 2017, 139, 55313.
Int. Ed., 2011, 50, 10402; (b) Y.-L. Lai and J.-M. Huang, Org. Lett.,
2017, 19, 2022; (c) Y. Dai, F. Wu, Z. Zang, H. You and H. Gong, Chem.
– Eur. J., 2012, 16, 808; (d) L. L. Anka-Lufford, M. R. Prinsell and
D. J. Weix, J. Org. Chem., 2012, 77, 9989.
16 See the ESI† for details.
3 (a) J. Wang, B. P. Cary, P. Beyer, S. H. Gellman and D. J. Weix, Angew. 17 (a) H. Cao, H. Jiang, H. Feng, J. M. C. Kwan, X. Liu and J. Wu, J. Am.
Chem., Int. Ed., 2019, 58, 12081; (b) L. Huang, A. M. Olivares and
D. J. Weix, Angew. Chem., Int. Ed., 2017, 56, 11901; (c) K. M. M. Huihui,
J. A. Caputo, Z. Melchor, A. M. Olivares, A. M. Spiewak, K. A. Johnson,
T. A. DiBenedetto, S. Kim, L. K. G. Ackerman and D. J. Weix, J. Am.
Chem. Soc., 2016, 138, 5016; (d) S. Ni, N. M. Padial, C. Kingston,
J. C. Vantourout, D. C. Schmitt, J. T. Edwards, M. M. Kruszyk,
R. R. Merchant, P. K. Mykhailiuk, B. B. Sanchez, S. Yang, M. A. Perry,
G. M. Gallego, J. J. Mousseau, M. R. Collins, R. J. Cherney, P. S. Lebed,
Chem. Soc., 2018, 140, 16360; (b) X. Zhao, H. Y. Tu, L. Guo, S. Zhu,
F. L. Qing and L. Chu, Nat. Commun., 2018, 9, 3488; (c) L. Guo,
F. Song, S. Zhu, H. Li and L. Chu, Nat. Commun., 2018, 9, 4543;
(d) J. He, C. Chen, G. C. Fu and J. C. Peters, ACS Catal., 2018,
´
´
8, 11741; (e) A. Garcıa-Domınguez, R. Mondal and C. Nevado, Angew.
Chem., Int. Ed., 2019, 58, 12286; ( f ) Q. Zhao, J. Chen, X. Zhou, X. Yu,
J. Chen and W. Xiao, Chem. – Eur. J., 2019, 25, 8024; (g) Y. Zhao,
J. Chen and W. Xiao, Org. Lett., 2018, 20, 224.
J. S. Chen, T. Qin and P. S. Baran, J. Am. Chem. Soc., 2019, 141, 6726; 18 C. W. Cheung, F. E. Zhurkin and X. Hu, J. Am. Chem. Soc., 2015,
(e) C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar,
137, 4932, the discussion of the role of Fe is detailed in the ESI† (p. S12).
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 454--457 | 457