524
Russ. Chem. Bull., Int. Ed., Vol. 67, No. 3, March, 2018
Ivanova et al.
1-(1-Hydroxymethyl)-5-phenyl-3-(1,1,2,2-tetrafluoroethyl)-
References
-1Н-pyrazole (2с). White powder, 63% yield (according to
method A), 90% (according to method B), m.p. 96—98 C. IR,
/cm–1: 3305 (ОН); 1607, 1581 (С=С, С=N); 1205—1145
(С—F). NMR 1Н, 4.27 (t, 1 Н, ОН, J = 7.4 Hz); 5.58 (d, 2 Н,
СН2, J = 6.9 Hz); 6.11 (tt, 1 Н, Н(СF2)2, J = 53.5 Hz, J = 3.6 Hz);
6.65 (s, 1 Н, Н(4)); 7.49—7.63 (m, 5 Н, Ph). NMR 19F, : 26.04
(dt, 2 F, НCF2, J = 53.5 Hz, J = 6.3 Hz); 48.6 (td, 2 F, CF2,
J = 6.3 Hz, J = 3.9 Hz). Found (%): С, 52.11; Н, 3.63; N, 10.01.
С12Н10F4N2О. Calculated (%): С, 52.56; Н, 3.68; N, 10.22.
Synthesis of 1-alkoxymethyl pyrazoles 3a,d, 4a, and 5a.
A mixture of pyrazole 1a,d (0.45 mmol), paraformaldeldehyde
(0.35 g) in a corresponding alcohol (10 mL) with 0.3 mL of
concentrated HCl was heated at 80—90 C for 2—5 days
(monitoring by TLC). The reaction mixture was evaporated,
products 3a,d, 4a, and 5a were isolated by column chromato-
graphy, eluent: chloroform—ehtylacetate, 10 : 1.
1. J. Akhtar, A. A. Khan, Z. Ali, R. Haider, M. Shahar Yar, Eur.
J. Med. Chem., 2017, 125, 143.
2. A. Ansari, A. Ali, M. Asif, S. Shamsuzzaman, New J. Chem.,
2017, 41, 16.
3. R. S. Keri, K. Chand, T. Ramakrishnappa, B. M. Nagaraja,
Arch. Pharm., 2015, 348, 299.
4. Ş. G. Küçükgüzel, S. Şenkardeş, Eur. J. Med. Chem., 2015,
97, 786.
5. D. Raffa, B. Maggio, M. V. Raimondi, S. Cascioferro,
F. Plescia, G. Cancemi, G. Daidone, Eur. J. Med. Chem.,
2015, 97, 732.
6. R. Perez-Fernandez, P. Goya, J. Elguero, Arkivoc., 2014, ii, 233.
7. H. Kumar, D. Saini, S. Jain, N. Jain, Eur. J. Med. Chem.,
2013, 70, 248.
8. J.-J. Liu, M. Zhao, X. Zhang, X. Zhao, H.-L. Zhu, Mini-
Reviews Med. Chem., 2013, 13, 1957.
9. W. R. Dolbier, J. Fluorine Chem., 2005, 126, 157.
10. J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem.
Rev., 2014, 114, 2432.
11. C. Isanbor, D. O´Hagan, J. Fluorine Chem., 2006, 127, 303.
12. J.-P. Bégué, D. Bonnet-Delpon, J. Fluorine Chem., 2006,
127, 992.
13. K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013.
14. W. K. Hagmann, J. Med. Chem., 2008, 51, 4359.
15. D. O´Hagan, J. Fluorine Chem., 2010, 131, 1071.
16. S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem.
Soc. Rev., 2008, 37, 320.
17. J. Elguero, A. M. S. Silva, A. C. Tomé, Five-Membered
Heterocycles: 1,2-Azoles. Part 1. Pyrazoles, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany, 2011.
18. F. Li, J. Nie, L. Sun, Y. Zheng, J.-A. Ma, Angew. Chem. Int.
Ed., 2013, 52, 6255.
19. N. R. Emmadi, C. Bingi, S. S. Kotapalli, R. Ummanni, J. B. Na-
nubolu, K. Atmakur, Bioorg. Med. Chem. Lett., 2015, 25, 2918.
20. R. S. Foster, H. Adams, H. Jakobi, J. P. A. Harrity, J. Org.
Chem., 2013, 78, 4049.
21. J. Elguero, S. Juliá, C. Martínez-Martorell, Heterocycles,
1986, 24, 2233.
22. R. Touzani, A. Ramdani, S. El Kadiri, F. Gourand, Molecules,
1999, 4, M116.
23. S. Radi, S. Salhi, A. Radi, Lett. Drug Des. Discov., 2010, 7, 27.
24. E. Kim, H. Y. Woo, S. Kim, H. Lee, D. Kim, H. Lee,
Polyhedron, 2012, 42, 135.
25. M. Tramontini, L. Angiolini, Tetrahedron, 1990, 46, 1791.
26. A. E. Ivanova, Y. V. Burgart, V. I. Saloutin, P. A. Slepukhin,
S. S. Borisevich, S. L. Khursan, J. Fluorine Chem., 2017, 195, 47.
27. A. E. Ivanova, O. G. Khudina, Y. V. Burgart, V. I. Saloutin, M. A.
Kravchenko, Russ. Chem. Bull., 2011, 60, 2396.
28. A. E. Ivanova, Y. V. Burgart, V. I. Saloutin, Chem. Heterocycl.
Compd. (Engl. Transl.), 2013, 49, 1128.
1-Ethoxymethyl-3-trifluoromethyl-5-methyl-4-[(4-methyl-
phenyl)diazenyl]-1Н-pyrazole (3a). Yellow powder, 30% yield,
m.p. 79—81 C. IR, /cm–1: 1610, 1583 (С=С, С=N); 1187—1142
1
(С—F). NMR Н, 1.19 (t, 3 Н, ОСН2Me, J = 7.0 Hz); 2.42
(s, 3 Н, С6Н4—Me); 2.70 (s, 3 Н, 3-Me); 3.59 (q, 2 Н, ОСН2Me,
J = 7.0 Hz); 5.52 (br. s, 2 Н, СН2); 7.28—7.30 (m, 2 Н, Hm, С6Н4);
7.75—7.76 (m, 2 Н, Ho, С6Н4). NMR 19F, : 100.0 (s, CF3).
Found (%): С, 55.13; Н, 5.21; N, 17.11. С15Н17F3N4О. Calculat-
ed (%): С, 55.21; Н, 5.25; N, 17.17.
1-Ethoxymethyl-3-heptafluoropropyl-5-methyl-4-[(4-meth-
oxyphenyl)diazenyl]-1Н-pyrazole (3d). Orange oil, 42% yield. IR,
/cm–1: 1603, 1585 (С=С, С=N); 1257—1209 (С—F). NMR
1Н, 1.17 (t, 3 Н, ОСН2Me, J = 7.0 Hz); 2.67 (s, 3 Н, 3-Me);
3.56 (q, 2 Н, ОСН2Me, J = 7.0 Hz); 3.88 (s, 3 Н, OMe); 5.55
(s, 2 Н, СН2); 6.98—7.00 (m, 2 Н, Hm, С6Н4); 7.81—7.83
(m, 2 Н, Ho, С6Н4). NMR 19F, : 35.64 (m, 2 F, -CF2); 52.23
(m, 2 F, -CF2); 81.7 (t, 3 F, CF3, J = 9.3 Hz). Found (%):
С, 46.37; Н, 3.81; N, 12.42. С17Н17F7N4О2. Calculated (%):
С, 46.16; Н, 3.87; N, 12.67.
1-Butoxymethyl-5-methyl-4-[(4-methylphenyl)diazenyl]-3-
trifluoromethyl-1Н-pyrazole (4a). Crystallizing orange oil, 57%
yield. IR, /cm–1: 1609, 1587 (С=С , С=N); 1237—1172 (С—F).
NMR 1Н, 0.88 (t, 3 Н, О(СН2)3Me, J = 7.4 Hz); 1.33 (m, 2 Н,
ОСН2СН2СН2Me); 1.53 (m, 2 Н, ОСН2СН2СН2Me); 2.43
(s, 3 Н, C6H4—Me); 2.70 (s, 3 Н, 3-Me); 3.52 (t, 2 Н,
ОСН2(CH2)2Me, J = 6.5 Hz); 5.53 (s, 2 Н, СН2); 7.29
(d, 2 Н, Hm, С6Н4, J = 8.2 Hz); 7.76 (d, 2 Н, Ho, С6Н4,
J = 8.2 Hz). NMR 19F, : 100.0 (s, CF3). Found (%): С, 57.82;
Н, 6.10; N, 16.00. С17Н21F3N4О. Calculated (%): С, 57.62; Н, 5.97;
N, 15.81.
1-Hexyloxymethyl-5-methyl-4-[(4-methylphenyl)diazenyl]-
3-trifluoromethyl-1Н-pyrazole (5a). Orange oil, 65% yield. IR,
/cm–1: 1608, 1582 (С=С, С=N); 1227—1162 (С—F). NMR
1Н, 0.89 (t, 3 Н, О(СН2)5Me, J = 6.8 Hz); 1.34 (m, 6 Н,
ОСН2СН2(СН2)3Me); 1.58 (m, 2 Н, ОСН2СН2(СН2)3Me);
2.43 (s, 3 Н, C6H4—Me); 2.70 (s, 3 Н, 3-Me); 3.52 (t, 2 Н,
ОСН2(CH2)4Me, J = 6.6 Hz); 5.52 (s, 2 Н, СН2); 7.28
(d, 2 Н, Hm, С6Н4, J = 8.3 Hz); 7.76 (d, 2 Н, Ho, С6Н4,
J = 8.3 Hz). NMR 19F, : 100.0 (s, CF3). Found (%): С, 59.63;
Н, 6.47; N, 14.72. С19Н25F3N4О. Calculated (%): С, 59.67;
Н, 6.59; N, 14.65.
29. A. E. Ivanova, Y. V. Burgart, V. I. Saloutin, Mendeleev Com-
mun., 2016, 26, 106.
30. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
31. I. H. Jeong, S. L. Jeon, M. S. Kim, B. T. Kim, J. Fluorine
Chem., 2004, 125, 1629.
32. V. Y. Sosnovskikh, Russ. Chem. Bull. (Int. Ed.), 2003, 52, 2087.
The present work was financially supported by the
Russian Science Foundation (Project No. 16-13-10255).
Received November 21, 2017;
accepted January 16, 2018