140
U. Herzog et al. / Journal of Organometallic Chemistry 612 (2000) 133–140
(1 mmol) SiCl2Me–SiCl2Me in 40 ml hexane with 0.094
g (1 mmol) HSCH2CH2SH and 0.20 g (0.28 ml, 2
mmol) NEt3. An attempt was made to separate 10 from
9a by fractional distillation: the product of the reaction
of 12.5 g (55 mmol) SiCl2Me–SiCl2Me with 4.7 g (50
mmol) HSCH2CH2SH and 10.1 g (13.8 ml, 100 mmol)
NEt3 in 150 ml hexane yielded after filtration and
removal of the solvent 2.6 g of a fraction at 120–
130°C/0.6 kPa. The 29Si-NMR spectrum (obtained after
2 days) revealed that the product was again equilibrated
to a mixture of 63% 10, 18% 9a and 13% SiCl2Me–
SiCl2Me. Besides these disilanes also 5% 4b and 1% 1
were observed as decomposition products formed dur-
ing the distillation.
supplementary publication nos. CCDC 145927 for 6,
CCDC 145928 for 7, CCDC: 145929 for 11. Copies of
the data can be obtained free of charge on application
to The Director, CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK (Fax: +44-1223-336033; e-mail:
ac.uk).
References
[1] H. Mayer, G. Nagorsen, Angew. Chem. Int. Ed. Engl. 18
(1979) 553.
[2] W. Wojnowski, K. Peters, M.C. Bo¨hm, H.G. v. Schnering, Z.
Anorg. Allg. Chem. 523 (1985) 169.
[3] A. Herman, Z. Pawelec, W. Wojnowski, H.G. v. Schnering,
Struct. Chem. 3 (1992) 155.
[4] W. Wojnowski, J. Pikies, Z. Anorg. Allg. Chem. 508 (1984)
201.
[5] E.V. van den Berghe, G.P. van der Kelen, J. Organomet.
Chem. 122 (1976) 329.
[6] U. Herzog, G. Roewer, Main Group Met. Chem. 22 (1999)
579.
3.6. Benzene-1,2-dithiolate deri6ati6es
0.22 g (2 mmol) Me3SiCl was dissolved in 40 ml
hexane and 0.12 g (0.85 mmol) o-C6H4(SH)2 and 0.20 g
(0.28 ml, 2 mmol) NEt3 were added under stirring.
After reacting overnight, the mixture was filtered and
the solvent removed in vacuo yielding 0.49 g (1.7 mmol)
pure 5 as oily residue.
Similar reaction of 0.129 g (1 mmol) Me2SiCl2 with
0.12 g (0.85 mmol) o-C6H4(SH)2 and 0.20 g (0.28 ml, 2
mmol) NEt3 yielded 0.17 g (0.86 mmol) solid 6 (m.p.
55°C).
[7] U. Herzog, U. Bo¨hme, G. Roewer, G. Rheinwald, H. Lang, J.
Organomet. Chem. 602 (2000) 193.
[8] H.-G. Horn, J. Prakt. Chem. 334 (1992) 201.
[9] F. Uhlig, B. Stadelmann, A. Zechmann, P. Lassacher, H.
Stu¨ger, E. Hengge, Phosphorus Sulfur Silicon 90 (1994) 29.
[10] H.S.D. Soysa, I.N. Jung, W.P. Weber, J. Organomet. Chem.
171 (1979) 177.
[11] SADABS: Area-Detector Absorption Correction, Siemens Indus-
trial Automation, Inc., Madison, WI, 1996.
[12] G.M. Sheldrick, SHELX97 [includes SHELXS97, SHELXL97,
CIFTAB], Programs for Crystal Structure Analysis (Release 97-
2), University of Go¨ttingen, Germany, 1997.
0.30 g (0.97 mmol) 7 (m.p.\190°C, dec.) were ob-
tained by the reaction of 0.191 g (1.125 mmol) SiCl4
with 0.32 g (2.25 mmol) o-C6H4(SH)2 and 0.45 g (0.63
ml, 4.5 mmol) NEt3 in 20 ml toluene after filtration and
removal of the solvent.
The reaction of 0.281 g (1.5 mmol) SiClMe2–
SiClMe2 with 0.213 g (1.5 mmol) o-C6H4(SH)2 and 0.30
g (0.42 ml, 3 mmol) NEt3 in 20 ml toluene resulted after
filtration and removal of the solvent in an oily product
whose NMR spectra suggested the formation of HS(o-
C6H4)S(SiMe2)2S(o-C6H4)SH (lSi: 3.9 ppm) as main
product rather than the expected six-membered ring
compound o-C6H4(SSiMe2)2.
Finally the addition of 0.213 g (1.5 mmol) o-
C6H4(SH)2 and 0.30 g (0.42 ml, 3 mmol) NEt3 to a
solution of 0.171 g (0.75 mmol) SiCl2Me–SiCl2Me in 20
ml toluene resulted in the formation of 0.24 g (0.67
mmol) 11 (m.p. 115°C).
12 was obtained in mixture with SiCl2Me–SiCl2Me
and 11 by a repetition of this reaction with twice the
amount of SiCl2Me–SiCl2Me.
[13] L. Zsolnai, G. Huttner, ZORTEP, University of Heidelberg, Ger-
many, 1994.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.
Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery
Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam,
A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C.
Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala,
Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres,
C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople,
Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh, PA,
1998.
[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648. P.J. Stevens, F.J.
Devlin, C.F. Chablowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
11623.
[16] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28 (1973) 213.
M.M. Francl, W.J. Petro, W.J. Hehre, J.S. Binkley, M.S. Gor-
don, D.J. DeFrees, J.A. Pople, J. Chem. Phys. 77 (1982) 3654.
[17] E. Keller, SCHAKAL97, University of Freiburg, Germany, 1997.
[18] H. Sakurai, K. Tominaga, T. Watanabe, M. Kumada, Tetrahe-
dron 45 (1966) 5493.
4. Supplementary material
Crystallographic data (excluding structure factors)
for the structures in this paper have been deposited
with the Cambridge Crystallographic Data Centre as
[19] R. Lehnert, M. Ho¨ppner, H. Kelling, Z. Anorg. Allg. Chem.
591 (1990) 209.
.