C O M M U N I C A T I O N S
Table 2. anti-Selective Mannich Reactions between Various
Aldehydes and R-Imino Ester 4 Catalyzed by (S)-3a
(S)-1, the C-C bond forming reaction catalyzed by (S)-1 takes place
not only on the Si face of the syn-enamine but also on the Re face
of the anti-enamine in the reaction catalyzed by (S)-1 (Figure 1,
right). As a result, both anti- and syn-isomers are obtained.
In summary, we have developed a highly anti-selective direct
asymmetric Mannich reaction between aldehydes and the R-imino
ester catalyzed by the novel axially chiral amino sulfonamide (S)-
3. The procedure converts the R-imino ester to functional â-amino
aldehydes with significantly higher anti/syn ratio and enantio-
selectivity than previously possible. We are currently working to
expand the scope of this methodology and to apply the novel
sulfonamide catalyst for other organocatalytic asymmetric reactions.
catalyst
(mol %)
time
(h)
entry
R1
R2
% yieldb
anti/sync
% eed
1
2
3
4
5
6
7
8
9
Me
Me
Bu
Bu
Bn
i-Pr
t-Bu
i-Pr
i-Pr
Et
Et
Et
Et
Et
Et
Et
allyl
t-Bu
1
0.2
1
0.5
1
2
5
2
2
0.5
22
4
8
4
0.5
16
0.5
0.5
93
82
93
92
92
93
42
99
99
13/1
11/1
>99
97
99
>20/1
>20/1
11/1
>20/1
>20/1
16/1
97
>99
>99
>99
>99
>99
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan.
16/1
a The reaction between aldehydes (3 equiv) and R-imino esters was
carried out in dioxane in the presence of (S)-3 at room temperature. b Isolated
yield. c Determined by 1H NMR. d The enantiomeric excess of the anti-
isomer was determined by HPLC analysis using chiral column. Details are
given in Supporting Information.
Supporting Information Available: Experimental details and
characterization data for new compounds including the preparation of
catalysts (PDF). This material is available free of charge via the Internet
References
(1) For reviews, see: (a) Kobayashi, S.; Ueno, M. In ComprehensiVe
Asymmetric Catalysis Supplement I; Jacobsen, E. N., Pfaltz, A., Yama-
moto, H., Eds.; Springer: Berlin, 2003; Chapter 29.5. (b) Co´rdova, A.
Acc. Chem. Res. 2004, 37, 102.
(2) Direct Mannich reactions catalyzed by metal complexes: (a) Yamasaki,
S.; Iida, T.; Shibasaki, M. Tetrahedron 1999, 55, 8857. (b) Juhl, K.;
Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995.
(c) Trost, B. M.; Terrell, L. M. J. Am. Chem. Soc. 2003, 125, 338. (d)
Matsunaga, S.; Kumagai, N.; Harada, N.; Harada, S.; Shibasaki, M. J.
Am. Chem. Soc. 2003, 125, 4712. (e) Marigo, M.; Kjaersgaard, A.; Juhl,
K.; Gathergood, N.; Jørgensen, K. A. Chem.sEur. J. 2003, 9, 2359. (f)
Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
2003, 68, 2583.
(3) Proline-catalyzed direct Mannich reactions: (a) List, B.; Pojarliev, P.;
Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. (b) Co´rdova,
A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem.
Soc. 2002, 124, 1842. (c) Co´rdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz,
W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866. (d) Co´rdova,
A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749. (e) Hayashi, Y.;
Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew.
Chem., Int. Ed. 2003, 42, 3677. (f) Itoh, T.; Yokoya, M.; Miyauchi, K.;
Nagata, K.; Ohsawa, A. Org. Lett. 2003, 5, 4301. (g) Ibrahem, I.; Casas,
J.; Co´rdova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. (h) Co´rdova, A.
Chem.sEur. J. 2004, 10, 1987. (i) Cobb, A. J. A.; Shaw, D. M.;
Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3,
84. (j) Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2004, 43, 4476. (k) Westermann, B.; Neuhaus, C. Angew. Chem., Int.
Ed. 2005, 44, 4077. (l) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G.
Angew. Chem., Int. Ed. 2005, 44, 4079. (m) Fustero, S.; Jime´nez, D.;
Sanz-Cervera, J. F.; Sa´nchez-Rosello´, M.; Esteban, E.; Simo´n-Fuentes,
A. Org. Lett. 2005, 7, 3433.
Figure 1. Possible transition states for the direct asymmetric Mannich
reaction catalyzed by (S)-3 (left) and (S)-1 (right).
The reaction between other aldehydes and R-imino esters in the
presence of a catalytic amount of (S)-3 was carried out in dioxane
at room temperature, and the selected data are summarized in Table
2. In the case of primary alkyl aldehydes, 1 mol % of (S)-3 is
sufficient to produce the corresponding â-amino aldehydes in high
yields (>92%) with virtually complete enantioselectivities (99%
ee) and excellent anti-selectivities (>11/1) (entries 1, 3, and 5).
The catalyst loading can be reduced to less than 1 mol % of (S)-3
with slightly decreased yield and stereoselectivities (entries 2 and
4). Although the reaction of a sterically hindered aldehyde required
a higher catalyst loading and proceeded in moderate yield, optimal
anti-selectivity and enantioselectivity were observed (entry 7).
Moreover, this reaction system was also applicable to other R-imino
esters (entries 8 and 9). It should be noted that self-aldol products
were not detected even in the presence of excess aldehyde (3 equiv).
The observed stereochemistry in the reaction using (S)-3 could
be explained by a transition state in which the Si face of the R-imino
ester approaches the Si face of the syn-enamine as directed by the
rigid and distant trifluoromethanesulfonamide group (Figure 1, left).
On the other hand, due to the flexibility of the carboxyl group in
(4) Direct Mannich reactions with other organocatalysts: (a) Yoon, T. P.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (b) Uraguchi, D.;
Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (c) Poulsen, T. B.;
Alemparte, C.; Saaby, S.; Bella, M.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2005, 44, 2896. (d) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J.
Am. Chem. Soc. 2005, 127, 11256.
(5) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed.
2005, 43, 3055.
JA056008W
9
J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005 16409