10.1002/anie.201803558
Angewandte Chemie International Edition
COMMUNICATION
[6]
[7]
For iridium-catalyzed asymmetric allylic substitution with ester-derived
silyl ketene acetals, see: X. Jiang, J. F. Hartwig, Angew. Chem. 2017,
129, 9013-9017; Angew. Chem. Int. Ed. 2017, 56, 8887-8891.
a) A. Saitoh, K. Achiwa, T. Morimoto, Tetrahedron: Asymmetry 1998, 9,
741-744; b) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org.
Chem.1980, 45, 5193-5196.
approaches by enabling transformations with nucleophiles not
requiring prior preparation. Finally, the synthetic utility of this
methodology was showcased through
synthesis of meroterpenoid (+)-Conicol.
a
concise formal
Acknowledgements
[8]
[9]
N. Kanbayashi, A. Yamazawa, K. Takii, T.-a. Okamura, K. Onitsuka,
Adv. Synth. Catal. 2016, 358, 555-560.
We thank the NMR and X-ray crystallography services for their
assistance. We also thank the Wennemers´ group for their
support with chiral chromatography. ETH Zürich and the Swiss
National Science Foundation (200020_152898) are gratefully
acknowledged for financial support.
The genesis of this idea stems from the use of 2-methoxypropene in
acetone aldol equivalent reactions, see: a) E. M. Carreira, W. Lee, R. A.
Singer, J. Am. Chem. Soc., 1995, 117, 3649–3650; the use of
enamines in allylation reactions provides an important analogy, for
examples developed in our group, see: b) S. Krautwald, D. Sarlah, M. A.
Schafroth, E. M. Carreira, Science 2013, 340, 1065-1068; c) S.
Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira, J. Am. Chem.
Soc. 2014, 136, 3020-3023; d) T. Sandmeier, S. Krautwald, H. F. Zipfel,
E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363-14367; Angew.
Chem. 2015, 127, 14571-14575; e) T. Sandmeier, S. Krautwald, E. M.
Carreira, Angew. Chem. Int. Ed. 2017, 56, 11515-11519; Angew. Chem.
2017, 129, 11673-11677; for mechanistic studies, see: f) S. L. Rössler,
S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2017, 139, 3603-3606;
for other examples of enamines as nucleophiles in iridium-catalyzed
allylic substitution, see: g) D. J. Weix, J. F. Hartwig, J. Am. Chem. Soc.
2007, 129, 7720-7721; h) L. Næsborg, K. S. Halskov, F. Tur, S. M. N.
Mønsted, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 10193-
10197; Angew. Chem. 2015, 127, 10331-10335.
Keywords: Iridium • orthoacetate • allylation • enantioselective •
synthesis
[1]
For selected reviews on iridium-catalyzed allylic substitution, see: a)
W.-B. Liu, J.-B. Xia, S.-L. You, Top. Organomet. Chem. 2011, 38, 155-
208; for selected examples in natural products synthesis, see: b) J. Qu,
G. Helmchen, Acc. Chem. Res. 2017, 50, 2539-2555; c) O. F. Jeker, A.
G. Kravina, E. M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 12166-
12169; Angew. Chem. 2013, 125, 12388-12391; d) X. Liang, T.-Y.
Zhang, X.-Y. Zeng, Y. Zheng, K. Wei, Y.-R. Yang, J. Am. Chem. Soc.
2017, 139, 3364-3367; e) Y. Zheng, K. Wei, Y.-R. Yang, Org. Lett.
2017, 19, 6460-6462; f) M. A. Schafroth, G. Zuccarello, S. Krautwald, D.
Sarlah, E. M. Carreira, Angew. Chem. Int. Ed. 2014, 53, 13898-13901;
Angew. Chem. 2014, 126, 14118-14121; g) S. L. Rössler, B. S. Schreib,
M. Ginterseder, J. Y. Hamilton, E. M. Carreira, Org. Lett. 2017, 19,
5533-5536.
[10] P. R. Johnson, H. M. Barnes, S. M. McElvain, J. Am. Chem. Soc. 1940,
62, 964-972.
[11] For studies on this topic, see: a) P. R. Johnson, H. M. Barnes, S. M.
McElvain, J. Am. Chem. Soc. 1940, 62, 964-972; b) T. Tokuyasu, H.
Mayr, Eur. J. Org. Chem. 2004, 2004, 2791-2796.
[2]
For the first reports on iridium catalyzed allylic substitution with
stabilized enolates, see: a) R. Takeuchi, M. Kashio, Angew. Chem. Int.
Ed. 1997, 36, 263-265; Angew. Chem. 1997, 109, 268-270; b) J. P.
Janssen, G. Helmchen, Tetrahedron Lett. 1997, 38, 8025-8026; for
selected examples on stabilized enolates or active methylene
compounds, see: c) G. Lipowsky, N. Miller, G. Helmchen, Angew.
Chem. Int. Ed. 2004, 43, 4595-4597; Angew. Chem. 2004, 116, 4695-
4698; d) S. Streiff, C. Welter, M. Schelwies, G. Lipowsky, N. Miller, G.
Helmchen, Chem. Comm. 2005, 2957-2959; e) A. Alexakis, D. Polet,
Org. Lett. 2004, 6, 3529-3532; f) Q.-L. Xu, L.-X. Dai, S.-L. You, Adv.
Synth. Catal. 2012, 354, 2275-2282; g) J. Chen, X. Zhao, W. Dan, J.
Org. Chem. 2017, 82, 10693-10698; for recent examples with β-
ketoesters, see: h) W.-B. Liu, C. M. Reeves, B. M. Stoltz, J. Am. Chem.
Soc. 2013, 135, 17298-17301; i) W.-B. Liu, C. M. Reeves, S. C. Virgil,
B. M. Stoltz, J. Am. Chem. Soc. 2013, 135, 10626-10629.
[12] For more details, see Supporting Information.
[13] We also tested triethyl orthoacetate as nucleophile under identical
reaction conditions with substrate 2b. The β-substituted, γ,δ-
unsaturated ethyl ester (4b’) was obtained in 76% yield and 92%
enantioselectivity; for the use of EGME in aldehyde addition reactions
using MgII/TiIV or NaI/ TiIV , see: a) P. Knochel, P. Quinio, L. Kohout, D.
Roman, J. Gaar, K. Karaghiosoff, Synlett 2016, 27 1715-1719; b) P.
Maier, H. Redlich, J. Richter, Tetrahedron: Asymmetry 2005, 16, 3848-
3852; c) P. Maier, H. Redlich, Synlett 2000, 2, 257-259; d) I. Kondolff,
H. Doucet, M. Santelli, Eur. J. Org. Chem. 2006, 2006, 765-774.
[14] L. Garrido, E. Zubía, M. J. Ortega, J. Salvá, J. Nat. Prod. 2002, 65,
1328-1331.
[15] A. Carroll, B. Bowden, J. Coll, Aust. J. Chem. 1993, 46, 1079-1083.
[16] a) L. Minuti, E. Ballerini, A. Barattucci, P. M. Bonaccorsi, M. L. Di Gioia,
A. Leggio, C. Siciliano, A. Temperini, Tetrahedron 2015, 71, 3253-
3262; for the first enantioselective total synthesis of (+)-Conicol, see: b)
B.-C. Hong, P. Kotame, C.-W. Tsai, J.-H. Liao, Org. Lett. 2010, 12, 776-
779.
[3]
[4]
For selected examples, see: a) T. Kanayama, K. Yoshida, H. Miyabe, Y.
Takemoto, Angew. Chem. 2003, 115, 2100-2102; Angew. Chem. Int.
Ed. 2003, 42, 2054-2056; for recent examples, see ref. [4c] and [4d].
a) X. Jiang, J. J. Beiger, J. F. Hartwig, J. Am. Chem. Soc. 2017, 139,
87-90; b) X. Jiang, P. Boehm, J. F. Hartwig, J. Am. Chem. Soc. 2018,
140, 1239-1242; c) X. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am.
Chem. Soc. 2018, 140, 2080-2084; d) L. Wei, Q. Zhu, S.-M. Xu, X.
Chang, C.-J. Wang, J. Am. Chem. Soc. 2018, 140, 1508-1513; e) Q.-L.
Xu, L.-X. Dai, S.-L. You, Adv. Synth. Catal. 2012, 354, 2275-2282; f) X.
Jiang, W. Chen, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55, 5819-
5823; Angew. Chem. 2016, 128, 5913-5917.
[5]
For selected examples on iridium catalyzed asymmetric allylic
substitution with ketone-derived enol silanes, see: a) T. Graening, J. F.
Hartwig, J. Am. Chem. Soc. 2005, 127, 17192-17193; b) D. J. Weix, J.
F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7720-7721; c) M. Chen, J. F.
Hartwig, Angew. Chem. Int. Ed. 2014, 53, 8691-8695; Angew. Chem.,
33, 8835-8839; d) M. Chen, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137,
13972-13979; e) M. Chen, J. F. Hartwig, Angew. Chem. Int. Ed. 2014,
53, 12172-12176; Angew. Chem. 2014 45 12368-12372 f) W. Chen, J.
F. Hartwig, J. Am. Chem. Soc. 2012, 134, 15249-15252; g) X. Liang, K.
Wei, Y.-R. Yang, Chem. Comm. 2015, 51, 17471-17474.
This article is protected by copyright. All rights reserved.