M. Sel6a et al. / Tetrahedron Letters 43 (2002) 1217–1219
1219
The carbamation reaction may take place also at a low
pressure (8 bar, entries 1–3), though under such condi-
tions, a competitive methylation process occurs and a
mixture of n-C10H21NHCO2Me (1a) and its N-methyl
derivative [n-C10H21N(Me)CO2Me, 2a] is recovered.
After 6 h, the ratio 1a:2a is 76:24 (entry 2), and even at
a lower conversion (74%, 3 h), it does not exceed 87:13
(entry 1). Prolonged reaction times do not alter signifi-
cantly the product distribution, suggesting that 2a
comes mainly from the N-methylated amine rather than
1a (entries 3 and 5). However, as the CO2 pressure is
increased, the carbamation selectivity is enhanced as
well, up to 96% at 90 bar (entry 7). The effect of the
solvent pressure results in the inhibition of the methyla-
tion reaction,17 which is advantageous for the forma-
tion of pure carbamates 1.
Green Chemistry: Designing Chemistry for the Environ-
ment; Anastas, P.; Williamson, T., Eds.; ACS Symposium
Series No. 626, 1996; Chapter 6, pp. 70–80.
8. (a) Trotta, F.; Tundo, P.; Moraglio, G. J. Org. Chem.
1987, 52, 1300; (b) Selva, M.; Bomben, A.; Tundo, P. J.
Chem. Soc., Perkin Trans. 1 1997, 1041; (c) Selva, M.;
Tundo, P.; Perosa, A. J. Org. Chem. 2001, 66, 677; (d)
Berto, C. Thesis, University of Ca’ Foscari, Venezia
(Italy), 2001.
9. DeSimone, J. M.; Selva, M.; Tundo, P. J. Org. Chem.
2001, 66, 4047.
10. Compound 1a: 1H NMR (CDCl3) l: 0.89 (t, 3H, CH3,
J=6.5 Hz), 1.27 (m, 14H, 7CH2), 1.49 (m, 2H, CH2),
3.16 (q, 2H, CH2N, J=6.4 Hz), 3.67 (s, 3H, OCH3), 4.66
(brs, 1H, NH); GC/MS (70 eV) m/z (relative intensity):
215 (M+, 4), 200 (3), 88 (100), 76 (17), 44 (13).
Compound 1b: 1H NMR (CDCl3) l: 0.89 (t, 3H, CH3,
J=6.7 Hz), 1.27 (m, 17H, 7CH2 and 1CH3), 1.49 (m, 2H,
CH2), 3.17 (q, 2H, CH2N, J=6.7 Hz), 4.11 (q, 2H,
OCH2, J=6.8 Hz), 4.62 (brs, 1H, NH); GC/MS (70 eV)
m/z (relative intensity): 229 (M+, 6), 200 (20), 102 (100),
90 (17), 41 (15).
In conclusion, the reported procedure is an example of
a genuinely clean synthesis of alkyl carbamates using
eco-friendly reagents without any catalysts or addi-
tional co-solvents. The efficiency of the method lies in
the use of compressed CO2 whose pressure must be
high enough (ꢀ90 bar) to favour the formation of
alkylammonium carbamates 2 (Eq. (1)), thus leading to
a substantial inhibition of N-methylated by-products.
However, solvation effects may also have a role: in fact,
at a higher CO2 pressure [130 bar, footnote (b) in the
Table 1], the conversion does not vary, meaning that a
higher concentration of the reactant CO2 does not
accelerate the reaction.
1
Compound 1c: H NMR (CDCl3) l: 1.67 (brs, 1H, NH),
3.73 (s, 3H, OCH3), 4.83 (d, 2H, CH2, J=5.5 Hz),
7.4-8.05 (m, 7H, Ar); GC/MS (70 eV) m/z (relative
intensity): 216 (12), 215 (M+, 81), 201 (12) 200 (87), 156
(60), 155 (21), 154 (51), 141 (60), 129 (100), 128 (48), 127
(48), 115 (48).
Compound 1d: 1H NMR (CDCl3) l: 1.25 (t, 3H, CH3,
J=6.9 hz), 1.61 (brs, 1H, NH), 4.16 (q, 2H, OCH2,
J=6.9 Hz), 4.83 (d, 2H, CH2, J=5.6 Hz), 7.40-7.90 (m,
7H, Ar); GC/MS (70 eV) m/z (relative intensity): 230 (8),
229 (M+, 49), 201 (15), 200 (100), 183 (12), 156 (62), 155
(12), 154 (32), 141 (48), 129 (93), 128 (34), 127 (33), 115
(32).
References
1. (a) Tai-Teh, W.; Huang, J.; Arrington, N. D.; Dill, G. M.
J. Agric. Food Chem. 1987, 35, 817; (b) Rivetti, F.;
Romano, U.; Sasselli, M. US Pat. 4514339, ECS 1985; (c)
Kato, T.; Suzuki, K.; Takahashi, J.; Kamoshita, K. J.
Pesticide Sci. 1984, 9, 489; (d) Aresta, M.; Quaranta, E.
Chem. Tech. 1997, 3, 32; (e) Greene, T. W.; Wuts, P. G.
M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley
& Sons: New York, 1999.
2. Babad, H.; Zieler, A. G. Chem. Rev. 1973, 73, 75.
3. Matlack, A. Introduction to Green Chemistry; M. Dekker,
2001; pp. 27–45.
4. (a) Cenini, S.; Pizzetti, M.; Crotti, C. In Aspects of
Homogeneous Catalysis; Ugo, R., Ed.; Riedel: Dordrecht,
The Netherlands, 1998; Vol. 6, pp. 97–108; (b) Aresta,
M.; Giannoccaro, P.; Tommasi, I. J. Organomet. Chem.
1994, 476, 13.
Compounds 1e and 1f: full characterisation data are in
Refs. 13c and 6a, respectively.
11. Jessop, P. G.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 345.
12. Bortnick, N.; Luskin, L. S.; Hurwitz, M. D.; Rytina, A.
W. J. Am. Chem. Soc. 1956, 78, 4358.
13. (a) Cahours, A. Ann. 1845, 56, 266; (b) Fu, Z.-H.; Ono,
Y. J. Mol. Catal. 1994, 91, 399; (c) Vauthey, I.; Valot, F.;
Gozzi, C.; Fache, F.; Lemaire, M. Tetrahedron Lett.
2000, 6347.
14. Caplow, M. J. Am. Chem. Soc. 1968, 90, 6795.
15. Selva, M.; Marques, C. A.; Tundo, P. J. Chem. Soc.,
Perkin Trans. 1 1994, 1323.
16. Compound 2a: GC/MS (70 eV) m/z (relative intensity):
229 (M+, 8), 102 (100), 88 (19), 58 (18), 42 (18), 41 (29).
The structure of 2a was confirmed by reacting n-
C10H21NHMe with ClCO2Me according to known proce-
dures (Bortnick, N.; Luskin, L. S.; Hurwitz, M. D.;
Rytina, A. W. J. Am. Chem. Soc. 1956, 78, 4358).
17. DMC is an excellent N-methylating agent at tempera-
tures over 130°C (Ref. 8).
5. (a) Yoshida, M.; Hara, N.; Okuyama, S. Chem. Commun.
2000, 151; (b) Salvatore, R. N.; Shin, S., II; Nagle, A. S.;
Jumg, K. W. J. Org. Chem. 2001, 66, 1035.
6. (a) Aresta, M.; Quaranta, E. Tetrahedron 1991, 47, 9489;
(b) Aresta, M.; Dibenedetto, A.; Quaranta, E.; Boscolo,
M.; Larrson, R. J. Mol. Catal. 2001, 174, 7.
7. (a) Shaik, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96,
951; (b) Rivetti, F.; Romano, U.; Delledonne, D. In