108
H. Ste˛powska, A. Zamojski / Carbohydrate Research 321 (1999) 105–109
(s, 3 H, OCH3), 3.38, 3.26 (ABq, 2 H, H-6a,
Methyl
dene-9-C-methyl-h-
6,8,10-trideoxy-2,3-O-isopropyli-
-talo-decofuranosid-7-
H-6b), 2.23 (s, 3 H, CH3CO), 1.47, 1.31 (2 s, 6
H, (CH3)2C). 13C NMR (CDCl3): l 214.1
(CO), 106.7 (C-1), 85.2, 80.8, 80.2 (C-2, C-3,
C-4), 66.8 (C-5), 54.7 (OCH3), 46.5 (C-6), 30.9
(CH3CO), 25.9, 24.5 ((CH3)2C). IR wmax (film):
3487, 2938, 1715, 1374, 1091, 861 cm−1. Anal.
Calcd for C12H20O6 (260.28): C, 55.37; H,
7.74. Found C, 55.21; H, 7.95.
L
ulose (8).—Yield 39.5%; colourless oil (from
13
the C NMR spectrum of 8, a minute admix-
ture of the b- -allo stereoisomer can be dis-
D
cerned (\1:8); we did not succeed in its
isolation); [h]D −33.6° (c 1.4 CHCl3); IR wmax
(film): 3427, 2974, 1700, 1379, 1093, 869
cm−1. 1H NMR (CDCl3): l 4.96 (s, 1 H, H-1),
4.85 (d, 1 H, J 5.9 Hz, H-3), 4.58 (d, 1 H, J
5.9 Hz, H-2), 4.17–4.06 (m, 2 H, H-4, H-5),
3.70–3.51 (m, 2 H, CH2), 3.41 (s, 3 H, OCH3),
2.80–2.59 (m, 2 H, H-6a, H-6b), 1.47, 1.32 (2
s, 6 H, (CH3)2C), 1.28 (s, 6 H, (CH3)2ꢀCOH.
13C NMR (CDCl3): l 211.2 (CO), 109.9 (C-1),
90.2, 85.5, 80.2 (C-2, C-3, C-4), 68.6 (C-5),
55.7 (OCH3), 54.5 (CH2), 46.9 (C-6), 29.4, 29.3
(CH3)2CꢀOH), 26.3, 24.7 ((CH3)2C). HRMS
(LSIMS): m/z 341.1568 [M+Na]+. Calcd for
C15H26O7Na: 341.1576.
1
10b: H NMR (CDCl3): l 4.88 (s, 1 H,
H-1), 4.82 (dd, 1 H, J 6.0, 3.8 Hz, H-3), 4.55
(d, 1 H, J 6.0 Hz, H-2), 4.42–4.36 (m, 1 H,
H-5), 3.78 (dd, 1 H, J 3.8, 7.8 Hz, H-4), 3.34
(s, 3 H, OCH3), 3.28, 3.22 (ABq, 2 H, H-6a,
H-6b), 2.22 (s, 3 H, CH3CO), 1.43, 1.26 (2 s, 6
H, (CH3)2C). 13C NMR (CDCl3): l 212.4
(CO), 107.1 (C-1), 84.8, 81.1, 79.5 (C-2, C-3,
C-4), 66.0 (C-5), 54.5 (OCH3), 47.2 (C-6), 30.8
(CH3CO), 25.9, 24.6 ((CH3)2C)
3-O-Benzyl-6,8,10-trideoxy-1,2-O-isopropyl-
idene-9-C-methyl-h- -gluco-decapyranosulos-
D
1,3-Di-C-(methyl 2,3-O-isopropylidene-h-
manno-pentofuranosid-5-yl)acetone (9).—
D-
7-ulose (11).—Yield 0.166 g (21%); colourless
oil; (the gluco configuration of 11 was based
13
Yield 0.086 (17.1%); white foam; [h]D +49.3°
(c 0.9, CHCl3); IR wmax (film): 3457, 2937,
on the close analogy of its C NMR spectral
data with other compounds of the same
configuration [3]; [h]D −29.0° (c 2.1, CHCl3);
IR wmax (film): 3493, 2987, 2936, 1710, 1374,
1711, 1373, 1090, 863 cm−1
;
1H NMR
(CDCl3): l 4.87 (s, 1 H, H-1), 4.82 (dd, 1 H, J
5.9, 3.7 Hz, H-3), 4.58 (d, 1 H, J 5.9 Hz, H-2),
4.47 (m, 1 H, J 4.1, 8.3 Hz, H-5), 3.81 (dd, 1
H, J 3.7, 8.3 Hz, H-4), 3.30 (s, 3 H, OCH3),
2.92 (dd, 1 H, J 4.1, 16.9 Hz, H-6a), 2.76 (dd,
1 H, J 8.3, 16.9 Hz, H-6b), 1.47, 1.32 (2 s, 6
H, (CH3)2C). 13C NMR (CDCl3): l 207.5
(CO), 107.0 (C-1), 84.8, 81.2, 79.5 (C-2, C-3,
C-4), 66.0 (C-5), 54.6 (OCH3), 47.4 (C-6),
25.9, 24.6 ((CH3)2C). HRMS (LSIMS): m/z
485.2001[M+Na]+. Calcd for C21H34O11Na:
485.1999.
Methyl 6,8-dideoxy-2,3-O-isopropylidene-i-
-gulo- and -h-
uloses (10a,b).—Yield 0.033
10a+10b; colourless oil; (NMR data are
taken from a 6:1 mixture of L:D isomers.
Configuration assignments are based on anal-
ogy with methyl 6-O-alkyl-2,3-O-isopropyli-
1
1076, 887, 740 cm−1. H NMR (CDCl3): l
5.91 (d, 1 H, J 3.8 Hz, H-1), 4.82, 4.64 (ABq,
2 H, CH2Ph), 4.59 (d, 1 H, J 3.8 Hz, H-2),
4.44 (m, 1 H, H-5), 4.08 (d, 1 H, J 2.8 Hz,
H-3), 4.01 (dd, 1 H, J 2.8, 8.6 Hz, H-4), 1.95
(dt, 1 H, J 2.3, 4.8, 13.9 Hz, H-6a), 1.83 (dd,
1 H, J 2.3, 13.9 Hz, H-6b), 1.54–1.38 (m, 2 H,
CH2), 1.31 (s, 6 H, (CH3)2CꢀOH), 1.47, 1.23
(2 s, 6 H, (CH3)2C). 13C NMR (CDCl3): l
209.5 (CO), 104.9 (C-1), 82.9, 82.7, 80.8 (C-2,
C-3, C-4), 72.7 (CH2PH), 62.9 (CH), 62.8
(C-5), 45.1 (C-6), 41.2 (CH2), 30.9, 29.3
((CH3)2CꢀOH), 26.7, 26.2 ((CH3)2C). HRMS
(LISIMS): m/z 417.1874 [M+Na]+. Calcd
for C21H30O7Na: 417.1889. Anal. Calcd for
C21H30O7: C, 63.94; H, 7.67. Found: 63.95, H,
7.74.
L
D
-manno-octofuranosid-7-
(11.8%):
g
dene-b-
L
-gulo- and a- -manno-furanosides
D
[3]).
Acknowledgements
1
10a: H NMR (CDCl3): l 4.96 (s, 1 H,
H-1), 4.73 (dd, 1 H, J 5.9, 3.6 Hz, H-3), 4.58
(d, 1 H, J 5.9 Hz, H-2), 4.54–4.43 (m, 1 H,
H-5), 3.86 (dd, 1 H, J 3.6, 5.5 Hz, H-4), 3.33
Support of this work by the State Commit-
tee for Scientific Research (grant no. 3 TO9A
066 12) is gratefully acknowledged.