10.1002/anie.201800188
Angewandte Chemie International Edition
COMMUNICATION
Zambrano, S. C. Robson, D. Aspris, V. Migliori, A. J. Bannister, N.
Han, E. De Braekeleer, H. Ponstingl, A. Hendrick, C. R. Vakoc, G. S.
Vassiliou and T. Kouzarides, Nature 2017, 552, 126-131.
[2] N. Liu, Q. Dai, G. Zheng, C. He, M. Parisien and T. Pan, Nature
2015, 518, 560-564.
regions of rRNA for RNA methylation. Only approximately 30 %
of these randomly assigned regions mapped to known
methylation sites, establishing that our strategy strongly enriches
for MTase target sites independent of the type of methylation.
In summary, we showed that the propargyl-group can be
efficiently introduced by WT METTL3-METTL14 from the
synthetic AdoMet analog SeAdoYn (1). In combination with
bioconjugation and NGS, this presents a new avenue for direct
and precise assignment of m6A sites by blocking reverse
transcription independent of potential antibody biases.
Compared to a recently described method, based on iodination
of N6-allyladenosine,[16] our approach has several advantages:
(i) the CuAAC reaction is highly selective and enables RNA
enrichment, (ii) the propargyl group is more efficiently introduced
than the allyl group, because we use a selenium-based AdoMet
analog and (iii) we could introduce non-natural modifications in
vivo. For the first time, we show that a propargyl-group can be
used for metabolic labeling of RNA MTase target sites by
feeding cells with the respective amino acid precursor 2. In
combination with our bioconjugation and NGS protocol, we
confirmed known MTase target sites in rRNA. Adaptations for
mRNA sequencing will likely enable detection of m6A sites in
vivo. Finally, our strategy paves the way to identify target sites of
different RNA MTases in a transcriptome-wide manner.
[3] a) C. Zhang, Y. Chen, B. Sun, L. Wang, Y. Yang, D. Ma, J. Lv, J.
Heng, Y. Ding, Y. Xue, X. Lu, W. Xiao, Y. G. Yang and F. Liu, Nature
2017, 549, 273-276; b) X. Wang, Z. Lu, A. Gomez, G. C. Hon, Y.
Yue, D. Han, Y. Fu, M. Parisien, Q. Dai, G. Jia, B. Ren, T. Pan and
C. He, Nature 2014, 505, 117-120; c) X. Wang, B. S. Zhao, I. A.
Roundtree, Z. Lu, D. Han, H. Ma, X. Weng, K. Chen, H. Shi and C.
He, Cell 2015, 161, 1388-1399; d) W. Xiao, S. Adhikari, U. Dahal, Y.
S. Chen, Y. J. Hao, B. F. Sun, H. Y. Sun, A. Li, X. L. Ping, W. Y. Lai,
X. Wang, H. L. Ma, C. M. Huang, Y. Yang, N. Huang, G. B. Jiang, H.
L. Wang, Q. Zhou, X. J. Wang, Y. L. Zhao and Y. G. Yang, Mol. Cell
2016, 61, 507-519; e) Y. Yang, X. Fan, M. Mao, X. Song, P. Wu, Y.
Zhang, Y. Jin, Y. Yang, L. L. Chen, Y. Wang, C. C. Wong, X. Xiao
and Z. Wang, Cell Res. 2017, 27, 626-641.
[4] a) K. D. Meyer, D. P. Patil, J. Zhou, A. Zinoviev, M. A. Skabkin,
O. Elemento, T. V. Pestova, S. B. Qian and S. R. Jaffrey, Cell 2015,
163, 999-1010; b) H. Du, Y. Zhao, J. He, Y. Zhang, H. Xi, M. Liu, J.
Ma and L. Wu, Nat. Commun. 2016, 7, 12626.
[5] a) T. Lence, J. Akhtar, M. Bayer, K. Schmid, L. Spindler, C. H.
Ho, N. Kreim, M. A. Andrade-Navarro, B. Poeck, M. Helm and J. Y.
Roignant, Nature 2016, 540, 242-247; b) I. U. Haussmann, Z. Bodi,
E. Sanchez-Moran, N. P. Mongan, N. Archer, R. G. Fray and M.
Soller, Nature 2016, 540, 301-304.
[6] a) G. Zheng, J. A. Dahl, Y. Niu, P. Fedorcsak, C. M. Huang, C. J.
Li, C. B. Vagbo, Y. Shi, W. L. Wang, S. H. Song, Z. Lu, R. P.
Bosmans, Q. Dai, Y. J. Hao, X. Yang, W. M. Zhao, W. M. Tong, X. J.
Wang, F. Bogdan, K. Furu, Y. Fu, G. Jia, X. Zhao, J. Liu, H. E.
Krokan, A. Klungland, Y. G. Yang and C. He, Mol. Cell 2013, 49, 18-
29; b) J. M. Fustin, M. Doi, Y. Yamaguchi, H. Hida, S. Nishimura, M.
Yoshida, T. Isagawa, M. S. Morioka, H. Kakeya, I. Manabe and H.
Okamura, Cell 2013, 155, 793-806.
[7] a) D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, M.
Salmon-Divon, L. Ungar, S. Osenberg, K. Cesarkas, J. Jacob-
Hirsch, N. Amariglio, M. Kupiec, R. Sorek and G. Rechavi, Nature
2012, 485, 201-206; b) K. D. Meyer, Y. Saletore, P. Zumbo, O.
Elemento, C. E. Mason and S. R. Jaffrey, Cell 2012, 149, 1635-
1646.
Experimental Section
Experimental Details can be found in the Supplementary Information.
All sequencing data are available at the Gene Expression Omnibus
(Accession number: GSE109298).
[8] a) B. Linder, A. V. Grozhik, A. O. Olarerin-George, C. Meydan, C.
E. Mason and S. R. Jaffrey, Nat. Methods 2015, 12, 767-772; b) K.
Chen, Z. Lu, X. Wang, Y. Fu, G. Z. Luo, N. Liu, D. Han, D.
Dominissini, Q. Dai, T. Pan and C. He, Angew. Chem. Int. Ed. 2015,
54, 1587-1590.
Acknowledgements
This work was funded by the SPP1784 of the DFG (RE2796/3-1
and LE 3260/2-1) and EXC 1003 Cells in Motion – Cluster of
Excellence. A. O. and B. S. N. gratefully acknowledge
fellowships of the Graduate School of the Cells-in-Motion Cluster
of Excellence (EXC 1003 - CiM), University of Münster,
Germany. A.R. thanks the Fonds der Chemischen Industrie for
financial support (Dozentenpreis). We thank Dr. W. Dörner, F.
Muttach, Kristina Rau, and S. Wulff for excellent experimental
assistance, and Prof. Gunter Meister (Regensburg) for the
pFastBacDual_METTL3_METTL14 plasmid.
[9] N. Liu, M. Parisien, Q. Dai, G. Zheng, C. He and T. Pan, RNA
2013, 19, 1848-1856.
[10] E. M. Harcourt, T. Ehrenschwender, P. J. Batista, H. Y. Chang
and E. T. Kool, J. Am. Chem. Soc. 2013, 135, 19079-19082.
[11] J. Aschenbrenner, S. Werner, V. Marchand, M. Adam, Y.
Motorin, M. Helm and A. Marx, Angew. Chem. Int. Ed. 2018, 57,
417-421.
[12] a) C. Dalhoff, G. Lukinavicius, S. Klimasauskas and E.
Weinhold, Nat. Protoc. 2006, 1, 1879-1886; b) C. Dalhoff, G.
Lukinavicius, S. Klimasauskas and E. Weinhold, Nat. Chem. Biol.
2006, 2, 31-32; c) Y. Motorin, J. Burhenne, R. Teimer, K. Koynov, S.
Willnow, E. Weinhold and M. Helm, Nucleic Acids Res. 2010, 39,
1943-1952; d) D. Schulz, J. M. Holstein and A. Rentmeister, Angew.
Chem. Int. Ed. 2013, 52, 7874-7878.
[13] a) K. Islam, W. Zheng, H. Yu, H. Deng and M. Luo, ACS Chem.
Biol. 2011, 6, 679-684; b) R. Wang, W. Zheng, H. Yu, H. Deng and
M. Luo, J. Am. Chem. Soc. 2011, 133, 7648-7651; c) K. Islam, I.
Bothwell, Y. Chen, C. Sengelaub, R. Wang, H. Deng and M. Luo, J.
Am. Chem. Soc. 2012, 134, 5909-5915; d) L. Anhauser, F. Muttach
and A. Rentmeister, Chem. Commun. 2018, 54, 449-451; e) J. M.
Holstein, L. Anhauser and A. Rentmeister, Angew. Chem. Int. Ed.
2016, 55, 10899-10903; f) J. M. Holstein, D. Stummer and A.
Rentmeister, Protein Eng., Des. Sel. 2015, 28, 179-186; g) J. M.
Holstein, D. Schulz and A. Rentmeister, Chem. Commun. 2014, 50,
4478-4481; h) F. Muttach, N. Muthmann, D. Reichert, L. Anhauser
and A. Rentmeister, Chem. Sci. 2017, 8, 7947-7953; i) J. M.
Keywords: N6-Methyladenosine • ribose methylation • RNA
modification• metabolic labeling • next generation sequencing
[1] a) B. S. Zhao, I. A. Roundtree and C. He, Nat. Rev. Mol. Cell Biol.
2017, 18, 31-42; b) K. Xu, Y. Yang, G. H. Feng, B. F. Sun, J. Q.
Chen, Y. F. Li, Y. S. Chen, X. X. Zhang, C. X. Wang, L. Y. Jiang, C.
Liu, Z. Y. Zhang, X. J. Wang, Q. Zhou, Y. G. Yang and W. Li, Cell
Res. 2017, 27, 1100-1114; c) P. J. Hsu, Y. Zhu, H. Ma, Y. Guo, X.
Shi, Y. Liu, M. Qi, Z. Lu, H. Shi, J. Wang, Y. Cheng, G. Luo, Q. Dai,
M. Liu, X. Guo, J. Sha, B. Shen and C. He, Cell Res. 2017, 27,
1115-1127; d) I. Barbieri, K. Tzelepis, L. Pandolfini, J. Shi, G. Millan-
This article is protected by copyright. All rights reserved.