C. F. Marcos et al. / Tetrahedron Letters 49 (2008) 149–152
151
9. Gai, X.; Grigg, R.; Tossapol, K.; Rajviroongit, S.;
Sridharan, V.; Zhang, L.; Collard, S.; Keep, A. Tetra-
hedron Lett. 2003, 44, 7441–7443, and references cited
therein.
10. Sarang, P. S.; Yadav, A. A.; Patil, P. S.; Krishna, U. M.;
Trivedi, G. K.; Salunke, M. M. Synthesis 2007, 1091–1095,
and references cited therein.
11. (a) Ishibashi, H.; Kawanami, H.; Ikeda, M. J. Chem. Soc.,
Perkin Trans. 1 1997, 817–821; (b) Couture, A.; Deniau,
E.; Grandclaudon, P.; Hoarau, C. Tetrahedron 2000, 56,
1491–1499; (c) Comins, D. L.; Schilling, S.; Zhang, Y.
Org. Lett. 2005, 7, 95–98.
12. (a) Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau,
C. J. Org. Chem. 1998, 63, 3128–3132; (b) Rys, V.;
Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron
2003, 59, 6615–6619.
The structure of the Ugi four-component adducts 5a–d
was in agreement with their IR and H NMR spectra.
1
In the IR spectra two strong absorptions at about 3350
and 1700 cmÀ1 were detected, due to the secondary amino
group and to the ester carbonyl group, respectively. In
the 1H NMR spectra a singlet signal at about 3.80 d, due
to the ester methyl protons was detected. Furthermore, a
doublet signal at about 4.60 d due to the NH proton cou-
pled with the benzyl proton at about 7.00 d as seen. The
benzyl proton doublet was not always clearly detected
because of the overlapping with the aromatic protons.
1
The comparison of the IR and H NMR spectra of 5a–
d with those of 6a–d clearly confirmed the cyclization.
In the IR spectra of 6a–d no NH peak was detected
and the CO peak was shifted to about 1690 cmÀ1 in
agreement with the presence of a c-lactam ring. As
13. (a) De Clercq, E. J. Med. Chem. 1995, 38, 2491–2517; (b)
Mertens, A.; Zilch, H.; Ko¨nig, B.; Scha¨fer, W.; Poll, T.;
Kampe, W.; Seidel, H.; Leser, U.; Leinert, H. J. Med.
Chem. 1993, 36, 2526–2535.
1
expected in the H NMR spectra of 6a–d the signals
attributable to the ester methyl protons and to the NH
proton disappeared and a singlet signal at about 6.90 d
due to the benzyl proton was detected. In the H NMR
spectra of 6e–j the benzyl proton singlet was always
clearly detected at about 6.00 d; consequently, it was well
separated from the aromatic protons signals.
14. (a) Suzuki, M.; Uchiumi, M.; Marasaki, M. Psychophar-
macology 1995, 121, 442–450; (b) Takahashi, I.; Kawa-
kami, T.; Hirano, E.; Yokota, H.; Kitajima, H. Synlett
1996, 353–355.
15. Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.;
Wustrow, D. J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A.
E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. Bioorg.
Med. Chem. Lett. 1998, 8, 1499–1502.
1
In conclusion, we have developed a method for assem-
bling two interesting heterocyclic systems by means of
a very simple experimental procedure. The desired prod-
ucts 6e–j were obtained by mixing the reactants at room
temperature and precipitated from the mother liquors in
a pure form, avoiding the need of tedious work-up pro-
cedures. When anilines were employed as the starting
amines the Ugi adducts were easily isolated and cyclized
to 6a–d in a very simple and rapid fashion.
16. Zhuang, Z. P.; Kung, M. P.; Mu, M.; Kung, H. F. J. Med.
Chem. 1998, 41, 157–166.
17. (a) Hanusch-Kompa, G.; Ugi, I. Tetrahedron Lett. 1998,
39, 2725–2728; (b) Ley, S. V.; Taylor, S. J. Bioorg. Med.
Chem. Lett. 2002, 12, 1813–1816; (c) Zhang, J.; Jacobson,
A.; Rusche, J. R.; Herlihy, W. J. Org. Chem. 1999, 64,
1074–1076.
18. (a) Ugi, I.; Steinbruckner, C. Chem. Ber. 1961, 94, 734–
742; (b) Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1,
8–21.
´
19. Bienayme, H.; Bouzid, K. Tetrahedron Lett. 1998, 39,
2735–2738.
20. Nixey, T.; Hulme, C. Tetrahedron Lett. 2002, 43, 6833–
6835.
References and notes
21. (a) Nixey, T.; Kelly, M.; Hulme, C. Tetrahedron Lett.
2000, 41, 8729–8733; (b) Nixey, T.; Kelly, M.; Semin, D.;
Hulme, C. Tetrahedron Lett. 2002, 43, 3681–3684.
22. (a) Marcaccini, S.; Torroba, T. Org. Prep. Proced. Int.
1993, 25, 141–208; (b) Marcaccini, S.; Torroba, T. Post-
condensation Modifications of the Passerini and Ugi
Reactions. In Multicomponent Reactions; Zhu, J., Bien-
1. (a) Butler, R. N. In Comprehensive Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon: Oxford, 1996; Vol. 4, pp 621–678; (b)
Himo, F.; Demko, Z. P.; Noodleman, L. J. Org. Chem.
2003, 68, 9076–9080, and references cited therein; (c)
Upadhayaya, R. S.; Sinha, N.; Jain, S.; Kishore, N.;
Chandra, R.; Arora, S. K. Bioorg. Med. Chem. 2004, 12,
2225–2228.
2. Gross, E. G.; Featherstone, R. M. J. Pharmacol. Exp.
Ther. 1946, 87, 299–305.
3. Huynh, M. H. V.; Coburn, M. D.; Meyer, T. J.; Wetzler,
M. Proc. Natl. Acad. Sci. U.S.A 2006, 103, 10322–10327.
4. Gao, E.-Q.; Liu, N.; Cheng, A.-L.; Gao, S. Chem.
Commun. 2007, 2470–2472.
´
ayme, H., Eds.; Wiley-VCH: Weinheim, 2005; pp 33–75;
(c) Ignacio, J. M.; Macho, S.; Marcaccini, S.; Pepino, R.;
Torroba, T. Synlett 2005, 3051–3054; (d) Sanudo, M.;
˜
Marcaccini, S.; Basurto, S.; Torroba, T. J. Org. Chem.
2006, 71, 4578–4584; (e) Neo, A. G.; Carrillo, R. M.;
´
Barriga, S.; Moman, E.; Marcaccini, S.; Marcos, C. F.
Synlett 2007, 327–329.
23. While the manuscript was in preparation a paper dealing
with the use of 2-formylbenzoic esters as bireactive
materials for the synthesis of quinoline-based tetracycles
via isocyanide multicomponent reaction appeared: Che,
C.; Xiang, J.; Wang, G.-X.; Fathi, R.; Quan, J.-M.; Yang,
Z. J. Comb. Chem., Web release date: 18 August 2007,
24. Methyl 2-formylbenzoate 1a was prepared from phthalal-
dehydic acid and methyl iodide in acetonitrile Ye, B.-H.;
Naruta, Y. Tetrahedron 2003, 59, 3593–3601, Methyl
opianate 1b was best prepared by treating a suspension of
finely powdered opianic acid in Et2O/CHCl3 (1:1) with
ethereal diazomethane at 0 °C.
5. (a) Zabrocki, J.; Smith, G. D.; Dunbar, J. B., Jr.; Iijima,
H.; Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875–
5880; (b) Kaczmarek, K.; Jankowski, S.; Siemion, I. Z.;
Wieczorek, Z.; Benedetti, E.; Di Lello, P.; Isernia, C.;
Saviano, M.; Zabrocki, J. Biopolymers 2002, 63, 343–
357.
6. Beusen, D. D.; Zabrocki, J.; Slomczynska, U.; Head, R.
D.; Kao, J.; Marshall, G. R. Biopolymers 1995, 36, 181–
200.
7. Zabrocki, J.; Dunbar, J. B. Jr.; Marshall, K. W.; Toth, M.
V.; Marshall, G. R. J. Org. Chem. 1992, 57, 202–209.
8. Lebl, M.; Slaninoca, J.; Johnson, R. L. Int. J. Pept.
Protein Res. 1989, 33, 16–21.