10.1002/anie.202004476
Angewandte Chemie International Edition
COMMUNICATION
benzylidene acetal of 7[23] and subsequent deprotection of the
TBDPS group afforded 3,4-dihydroxy trehalose 8 in high yield.
The 3,4-dihydroxy groups were then acylated with a fatty acid
using Yamaguchi’s esterification conditions[24] to furnish the
tetraester 9 in 87% yield. Finally, the two benzyl esters and four
benzyl ethers were reductively removed using palladium black
and formic acid to obtain STL-1 in 94% yield. Thus, we
successfully achieved the first total synthesis of a nonsymmetrical
,-trehalose derivative using the catalytic formation of 1,1′-
glycosidic bonds.
In conclusion, we have developed a divergent and stereoselective
synthesis to obtain 1,1′-disaccharides from glycosyl 1,2-diols and
glycosyl donors in the presence of a borinic acid catalyst. The
stereochemistry of the glycosyl 1,2-diol is almost completely
controlled in cis-fashion due to the complexation with the borinic
acid, while the stereochemistry of the other anomer ( or ) is
controlled by the glycosyl donor used. Furthermore, the
complexation of 1,2- and 1,3-diols with borinic acid may generate
an ‘acidic OH group’ that can activate glycosyl donors such as
glycosyl phosphites. This activation mode is fundamentally
different from the previously reported mechanism using an
organoboron catalysts as a Lewis acid. These findings can be
expected to lead to further developments in organoboron
catalysis and glycosylation chemistry; related studies are
currently underway in our laboratory and the results will be
reported in due course.
Keywords: trehalose • carbohydrates • glycosylation •
organocatalysis • total synthesis
[1]
For biological studies on trehalose and trehalosamine derivatives, see:
a) L. A. Dolak, T. M. Castle, A. L. Laborde, J. Antibiot. 1980, 33, 690–
694; b) K. Yonehara, T. Hashizume, K. Ohe, S. Uemura, Tetrahedron:
Asymmetry 1999, 10, 4029–4035; c) J. M. Wolber, B. L. Urbanek, L. M.
Meints, B. F. Piligian, I. C. Lopez-Casillas, K. M. Zochowski, P. J.
Woodruff, B. M. Swarts, Carbohydr. Res. 2017, 450, 60–66; d) J. M.
Groenevelt, L. M. Meints, A. I. Stothard, A. W. Poston, T. J. Fiolek, D. H.
Finocchietti, V. M. Mulholand, P. J. Woodruff, B. M. Swarts, J. Org. Chem.
2018, 83, 8662–8667.
[2]
[3]
For the characterization of STL-1, see: a) Y. Tokumoto, N. Nomura, H.
Uchiyama, T. Imura, T. Morita, T. Fukuoka, D. Kitamoto, J. Oleo Sci.
2009, 58, 97–102. For the total synthesis of STL-1, see: b) S. Jana, S.
Mondal, S. S. Kulkarni, Org. Lett. 2017, 19, 1784–1787.
For the isolation of tunicamycins, see: a) A. Takatsuki, K. Arima, G.
Tamura, J. Antibiot. 1971, 24, 215–223; b) A. Takatsuki, K. Kawamura,
M. Okina, Y. Kodama, T. Ito, G. Tamura, Agric. Biol. Chem. 1977, 41,
2307–2309; c) T. Ito, A. Takatsuki, K. Kawamura, K. Sato, G. Tamura,
Agric. Biol. Chem. 1980, 44, 695–698; d) B. C. Tsvetanova, N. P. J. Price,
Anal. Biochem. 2001, 289, 147–156. For the total synthesis of
tunicamycins, see: e) J. Li, B. Yu, Angew. Chem., Int. Ed. 2015, 54,
6618–6621; f) K. Yamamoto, F. Yakushiji, T. Matsumaru, S. Ichikawa,
Org. Lett. 2018, 20, 256–259. For related tunicamycin derivatives, see:
g) K. Eckardt, H. Thrum, G. Bradler, E. Tonew, M. Tonew, J. Antibiot.
1975, 28, 274–279; h) H. Thrum, K. Eckardt, G. Bradler, R. Fügner, E.
Tonew, M. Tonew, J. Antibiot. 1975, 28, 514–521; i) P. Vogel, D. S.
Petterson, P. H. Berry, J. L. Frahn, N. Anderton, P. A. Cockrum, J. A.
Edgar, M. V. Jago, G. W. Lanigan, A. L. Payne, C. C. J. Culvenor, Aust.
J. Exp. Biol. Med. Sci. 1981, 59, 455–467; j) J. A. Edgar, J. L. Frahn, P.
A. Cockrum, N. Ander-ton, M. V. Jago, C. C. J. Culvenor, A. J. Jones, K.
Murray, K. J. Shaw, J. Chem. Soc. Chem. Commun. 1982, 222–224; k)
K. Eckardt, J. Nat. Prod. 1983, 46, 544–550; l) K.-i. Kimura, T. D. H. Bugg,
Nat. Prod. Rep. 2003, 20, 252–273; m) M. Winn, R. J. M. Goss, K.-i.
Kimura, T. D. H. Bugg, Nat. Prod. Rep. 2010, 27, 279–304.
[4]
[5]
For the isolation of avilamycins, see: a) G. Weitnauer, G. Hauser, C.
Hofmann, U. Lindeer, R. Boll, K. Pelz, S. J. Glaser, A. Bechthold, Chem.
Biol. 2004, 11, 1403–1411; b) M. S. Schmidt, V. Wittmann, Carbohydr.
Res. 2008, 343, 1612–1623. For synthetic studies on avilamycins, see:
c) M. S. Schmidt, V. Wittmann, Carbohydr. Res. 2008, 343, 1612-1623.
For the isolation of everninomicins, see: a) M. J. Weinstein, G. M.
Luedemann, E. M. Oden, G. H. Wagman, Antimicrob. Agents Chemother.
1964, 10, 24–32; b) L. Belova, T. Tenson, L. Xiong, P. M. McNicholas, A.
S. Mankin, Proc. Natl. Acad. Sci. USA 2001, 98, 3726–3731. For
synthetic studies on and the total synthesis of everninomicins, see: c) K.
C. Nicolaou, F. L. van Delft, S. R. Conley, H. J. Mitchell, Z. Jin, R. M.
Rodríguez, J. Am. Chem. Soc. 1997, 119, 9057–9058; d) K. C. Nicolaou,
K. C. Fylaktakidou, H. J. Mitchell, F. L. van Delft, R. M. Rodríguez, S. R.
Conley, Z. Jin, Chem.-Eur. J. 2000, 6, 3166–3185.
[6]
[7]
a) A. D. Elbein, Y. T. Pan, I. Pastuszak, D. Carroll, Glycobiology 2003,
13, 17R–27R; b) C.-H. Wu, C.-C. Wang, Org. Biomol. Chem., 2014, 12,
5558–5562; c) P. Shaul, R. I. Benhamou, I. M. Herzog, S. Louzoun Zada,
Y. Ebenstein, M. Fridman, Org. Biomol. Chem. 2016, 14, 3012–3015; d)
K. T. Ryter, G. Ettenger, O. K. Rasheed, C. Buhl, R. Child, S. M. Miller,
D. Holley, A. J. Smith, J. T. Evans, J. Med. Chem. 2020, 63, 309−320.
a) J. Yoshimura, K. Hara, T. Sato, H. Hashimoto, Chem. Lett. 1983, 319–
320; b) T. E. C. L. Ronnow, M. Meldal, K. Bock, Tetrahedron: Asymmetry
1994, 5, 2109–2122; c) G. H. Posner, D. S. Bull, Tetrahedron Lett. 1996,
37, 6279–6282; d) M. R. Pratt, C. D. Leigh, C. R. Bertozzi, Org. Lett.
2003, 5, 3185–3188; e) C. D. Leigh, C. R. Bertozzi, J. Org. Chem. 2008,
73, 1008–1017; f) C. Uriel, J. Ventura, A. M. Gómez, J. C. López, B.
Fraser-Reid, J. Org. Chem. 2012, 77, 795–800; g) H. Yamamoto, M. Oda,
Scheme 4. Application of the adduct ,-5a in the synthesis of STL-1.
Acknowledgements
This work was partly supported by JSPS KAKENHI grant
16H06384. S.I. is grateful for a JSPS Fellowship for Young
Scientists (17J08174).
This article is protected by copyright. All rights reserved.