Please do not adjust margins
New Journal of Chemistry
Page 3 of 5
DOI: 10.1039/C7NJ01595J
Journal Name
ARTICLE
2002, 114, 285; Angew. Chem. Int. Ed. 2002, 41, 275. e) X.-J.
Cheng, L.-L. Liang, K. Chen, N.-N. Ji, X. Xiao, J.-X. Zhang, Y.-Q.
Zhang, S.-F. Xue, Q.-J. Zhu, X.-L. Ni and Z. Tao, Angew. Chem.
2013, 125, 7393; Angew. Chem. Int. Ed. 2013, 52, 7252.
a) D. Shetty, J. K. Khedkar, K. M. Park and K. Kim, Chem. Soc.
Rev., 2015, 44, 8747; b) S. J. Barrow, S. Kasera, M. J.
Rowland, J. del Barrio and O. A. Scherman, Chem. Rev. 2015,
115, 12320.
a) D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma and H. Tian,
Chem. Rev, 2015, 115, 7543; b) C. J. Bruns, H. Liu, and M. B.
Francis, J. Am. Chem. Soc. 2016, 138, 15307; c) X.-H. Huang,
S.-Y. Huang, B.-Q. Zhai and Q.-C. Wang, Tetrahedron Lett.
2012, 53, 6414; d) H.-Y. Zhang, Q.-C. Wang, X. Ma and H.
Tian, Org. Lett. 2009, 11, 3234; e) Y. H. Ko, E. Kim, I. Hwang
and K. Kim, Chem. Commun. 2007, 1305.
a) X.-L. Ni, X. Xiao, H. Cong, Q.-J. Zhu, S.-F. Xue and Z. Tao,
Acc. Chem. Res. 2014, 47, 1386; b) S. K. Samanta, D.
Moncelet, V. Briken and L. Isaacs, J. Am. Chem. Soc. 2016,
138, 14488. c) G. Hettiarachchi, S. K. Samanta, S. Falcinelli, B.
Zhang, D. Moncelet, L. Isaacs, and V. Briken, Mol.
Pharmaceutics, 2016, 13, 809. d) S. Walker, R. Oun, F. J.
McInnes and N. J. Wheate, Isr. J. Chem. 2011, 51, 616; e) K.
M. Park, K. Suh, H. Jung, D. W. Lee, Y. Ahn, J. Kim, K. Baek
and K. Kim, Chem. Commun. 2009, 71.
a)X.-L. Ni, X. Xiao, H. Cong, L.-L. Liang, K. Cheng, X.-J. Cheng,
N.-N. Ji, Q.-J. Zhu, S.-F. Xue and Z. Tao, Chem. Soc. Rev. 2013,
42, 9480; b) D. Sigwalt, P. Y. Zavalij and L. Isaacs, Supramol.
Chem, 2016, 28, 825 c) D. Das and O. A. Scherman, Isr. J.
Chem. 2011, 51, 489; d) Y. Chen, Y.-M. Zhang and Y. Liu, Isr. J.
Chem. 2011, 51, 515; e) R. Nally, O. A. Scherman and L.
Isaacs, Supramol. Chem. 2010, 22, 683; f) Y. Liu, J. Shi, Y.
Chen and C.-F. Ke, Angew. Chem. 2008, 120, 7403; Angew.
Chem. Int. Ed. 2008, 47, 7293; g) S. W. Choi and H. Ritter,
Macromol. Rapid Commun. 2007, 28, 101. h) Y. Liu, C.-F. Ke,
H.-Y. Zhang, W.-J. Wu and J. Shi, J. Org. Chem. 2007, 72, 280;
i) Y. Ling and A. E. Kaifer, Chem. Mater. 2006, 18, 5944.
a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs,
Angew. Chem. 2005, 117, 4922; Angew. Chem. Int. Ed. 2005,
44, 4844; b) A. T. Bockus, L. C. Smith, A. G. Grice, O. A. Ali, C.
C. Young, W. Mobley, A. Leek, J. L. Roberts, B. Vinciguerra, L.
Isaacs and A. R. Urbach, J. Am. Chem. Soc. 2016, 138, 16549.
c) G. Ghale, V. Ramalingam, A. R. Urbach and W. M. Nau, J.
Am. Chem. Soc. 2011, 133, 7528; d) F. Biedermann, U.
Rauwald, M. Cziferszky, K. A. Williams, L. D. Gann, B. Y. Guo,
A. R. Urbach, C. W. Bielawski and O. A. Scherman, Chem. Eur.
J. 2010, 16, 13716; e) J. Wu and L. Isaacs, Chem. Eur. J. 2009,
15, 11675.
1638.7817). Many efforts had been made to isolate any pure
species from the above two filtrate, but all failed.
The structural dimensions of CyP4TD[4] and CyP5TD[5]
basing on the X-ray crystal structures are listed in table 1. The
portal size, cavity width, and the height of CyP4TD[4] are 1.2Å,
3.4Å and 8.6Å, respectively, while those of CyP5TD[5] are 2.2Å,
4.8Å and 8.2Å, respectively. The cavity volume of CyP4TD[4]
and CyP5TD[5] were then calculated as 38Å3 and 82Å3
respectively. The structural dimensions of CyP4TD[4] is
essentially the same as those of Me8TD[4], just like the fact
2
3
that the cavity of CyP5TD[5] equals to that of Me10TD[5]
.
The solubility of CyP4TD[4] and CyP5TD[5] in water and
organic solvents was determined by 1H NMR spectroscopy
with an internal standard[6a] at 25°C (see Supporting
Information for details), as illustrated in Table 2. It can be seen
that CyP5TD[5] has better oil solubility (10mM in methanol and
14mM in DMSO), but poorer solubility in H2O (6.3mM), when
compared with Me10TD[5] (5.6mM in methanol, 9.6mM in
DMSO, and 11.5mM in H2O), mainly due to the introduction of
the five hydrophobic cyclopentano groups. In comparison,
CyP4TD[4] does not show the solubility enhancement as
expected, it could hardly dissoveled among these solvents.
4
5
However, it should be noted that CyP4TD[4]•2CaCl2 shows
remarkable solubility in water (24.2mM), moderate one in
methanol (12.5mM), though relatively poor in DMSO (2.1mM).
Thermogravimetric analysis revealed that CyP4TD[4] and
CyP5TD[5] have good thermal stability. We did not detect any
mass loss connected with the decomposition of CyP5TD[5] and
CyP4TD[4] samples under nitrogen atmosphere up to 490°C
(Figure S11), which is comparable with cucurbituril
homologues.
6
In summary, we have successfully prepared two new
cucurbituril-like macrocycle, CyP4TD[4] and CyP5TD[5], by acid-
catalyzed condensation of cyclopentanopropanediurea and
formaldehyde, in the presence and absence of CaCl2 template,
respectively. Compared to CyP4TD[4] which has poor solubility
in common solvents, CyP5TD[5] has better solubility in organic
solvents than Me10TD[5] as expected. It should be emphasized
that other substituted propanediurea could be conveniently
obtained using the malonic ester synthetic strategy in this
work, and other functionalized TD[n] might consequently be
accessible.
7
a) E. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah and X.
Lu, RSC Adv. 2012, 2, 1213; b) L. Isaacs, Chem. Commun.
2009, 619; c) K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D.
Kim and J. Kim, Chem. Soc. Rev. 2007, 36, 267.
J. B. Wittenberg, P. Y. Zavalij and L. Isaacs, Angew. Chem.
2013, 125, 3778; Angew. Chem. Int. Ed. 2013, 52, 3690.
K. M. Park, J-A Yang, H. Jung, J. Yeom, J. S. Park, K-H Park, A.
S. Hoffman, S. K. Hahn and K. Kim, ACS Nano, 2012, 6 (4),
2960.
This work was financially supported by the NSFC/China
(21572063, 21372076, and 21072058), the Science Fund for
Creative Research Groups (21421004), the Programme of
Introducing Talents of Discipline to Universities (B16017), and
the Fundamental Research Funds for the Central Universities
222201717003.
8
9
10 S. Y. Jon, N. Selvapalam, D. H. Oh, J.-K. Kang, S.-Y. Kim, Y. J.
,
Jeon, J. W. Lee and K. Kim, J. Am. Chem. Soc. 2003, 125
10186.
11 a) F.-F. Chen, K. Chen, Y,-Q. Zhang, Q.-J. Zhu, Z. Tao and H.
Cong, Org. Lett., 2016, 18, 5544; b) N. Dong, T. Li, Y. Luo, L.
Shao, Z. Tao and C. Zhu, J. Chromatogr. A, 2016, 1470, 9.
12 L. Gilberg, S. A. Khan, M. Enderesova and V. Sindelar, Org.
Lett. 2014, 16, 2446.
Notes and references
1
a) W. A. Freeman, W. L. Mock and N. Y. Shih, J. Am. Chem.
Soc. 1981, 103, 7367. b) A. I. Day, A. P. Arnold and R. J.
Blanch Unisearch Limited, Australia, WO2000068232, 2000
(Chem. Abstr., 2000, 133, 362775); c) J. Kim, I. S. Jung, S. Y.
Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim,
J. Am. Chem. Soc. 2000, 122, 540; d) A. I. Day, R. J. Blanch, A.
P. Arnold, S. Lorenzo, G. R. Lewis, I. Dance, Angew. Chem.
13 V. Lewin, J. Rivollier, H. K. ilova, P. Berthault, J. P. Dognon, M.
P. Heck and G. Huber, Eur. J. Org. Chem. 2013, 3857.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins