Notes and references
1 (a) M. Iwamoto and Y. Tanaka, Catal. Surv. Jpn., 2001, 5, 25;
(b) M. Yonemitsu, Y. Tanaka and M. Iwamoto, J. Catal., 1998,
178, 207; (c) M. Yonemitsu, Y. Tanaka and M. Iwamoto, Chem.
Mater., 1997, 9, 2679.
2 H. Murata, H. Ishitani and M. Iwamoto, Tetrahedron Lett., 2008,
49, 4788.
3 (a) C. O. Kappe, in Multicomponent Reactions, ed. J. Zhu and
H. Bienaymie, Wiley-VHC, Weinheim, 2005, pp. 95–120;
(b) C. O. Kappe and A. Stadler, Org. React., 2004, 63, 1;
(c) C. O. Kappe, Tetrahedron, 1993, 49, 6937; (d) L.-Z. Gong,
X.-H. Chen and X.-Y. Xu, Chem.–Eur. J., 2007, 13, 8920.
4 H. Murata, H. Ishitani and M. Iwamoto, Org. Biomol. Chem.,
2010, 8, 1202.
5 (a) R. Ryoo, S. Jun, J. M. Kim and M. J. Kim, Chem. Commun.,
1997, 2225; (b) M. V. Landau, E. Dafa, M. L. Kaliya, T. Sea and
M. Herskowitt, Microporous Mesoporous Mater., 2001, 49, 65;
(c) A. Goldbourt, M. V. Landau and S. Vega, J. Phys. Chem. B,
2003, 107, 724; (d) S. Ito, H. Yamaguchi, Y. Kubota and
M. Asami, Tetrahedron Lett., 2009, 50, 2967; (e) K. Iwatani,
T. Sakakura and H. Yasuda, Catal. Commun., 2009, 10, 1990.
Fig. 5 Yields of the formyl C–H insertion reaction on Al(5)-M41-
[1.44] (closed circle) and Al(30)-M41-[0.72] (open circle). Reaction
conditions: Al-M41 20 mg, 1a 8.0 mmol, 2a 12 mmol, CH2Cl2 40
mL, 298 K. Determined by GC analysis.
6 (a) A. Corma, V. Fornes, M. T. Navarro and J. Perez-Paariente,
´ ´
J. Catal., 1994, 148, 569; (b) Z. Luan, H. He, W. Zhou,
C.-F. Cheng and J. Klinowski, J. Chem. Soc., Faraday Trans.,
1995, 91, 2955; (c) J. Weglarski, J. Datka, H. He and J. Klinowski,
J. Chem. Soc., Faraday Trans., 1996, 92, 5161; (d) R. Mokaya,
W. Jones, Z. Luan, M. D. Alba and J. Klinowski, Catal. Lett.,
1996, 37, 113; (e) Z. Luan, C.-F. Cheng, W. Zhou and
J. Klinowski, J. Phys. Chem., 1995, 99, 1018; (f) R. B. Borade
and A. Clearfield, Catal. Lett., 1995, 31, 262; (g) T. Kugita,
M. Ezawa, T. Owada, Y. Tomita and S. Namba, Microporous
Mesoporous Mater., 2001, 44–45, 531.
7 (a) H. Kosslick, G. Lischke, B. Parlitz, W. Storek and R. Fricke, Appl.
Catal., A, 1999, 184, 49; (b) S. K. Jana, T. Kugita and S. Namba, Appl.
Catal., A, 2004, 266, 245; (c) M. M. L. R. Carrott, F. L. Conceic¸ ao,
J. M. Lopes, P. J. M. Carrott, C. Bernardes, J. Rocha and
F. R. Riberio, Microporous Mesoporous Mater., 2006, 92, 270.
8 G. A. Eimer, L. B. Pierella, G. A. Monti and O. A. Anunziata,
Catal. Commun., 2003, 4, 118.
The effect of coordination of Al ions was studied by
using the solid-state 27Al-MAS NMR technique because tetra-
hedrally coordinated Al (AlO4) ion is often suggested as an
important acidic site.13 Both of AlO4 and AlO6 species could
be observed on the present samples but no significant correla-
tion with the catalytic activity was recognized (Fig. S12 in
ESI).w The results observed in Table 1 and Fig. 4 clearly show
the importance of coordination state of aluminium on the
silica wall but they were still unclear.
The catalytic activity of the present Al-M41 for the formyl
C–H insertion reaction2 were compared with the previous
catalyst in Fig. 5, in which the reaction of n-heptaldehyde
(1a) with ethyl diazo acetate (2a) was selected as the model
reaction. The reaction rate on the Al(5)-M41-[1.44] catalyst
was two times greater than that on the reported one
(Al(30)-M41-[0.72]) as shown in Fig. 5. The amount of
Al(5)-M41-[1.44] employed was only 2.5 mg per mmol of 1a
and the yield reached to 100%. As long as we know, the
amount of catalyst used in the figure is the least among those
of the reported heterogeneous catalysts.14,15
9 (a) R. Mokaya and W. Jones, Chem. Commun., 1997, 2185;
(b) A. Ortlar, M. Wark, G. Schulz, E. Kloff, J. Rathousky´ and
A. Zukal, Stud. Surf. Sci. Catal., 1998, 117, 357; (c) Y. Oumi,
H. Takagi, S. Sumiya, R. Mizuno, T. Uozumi and T. Sano,
Microporous Mesoporous Mater., 2001, 44–45, 267.
10 (a) C. Blanco, C. Pesquera and F. Gonzalez, Stud. Surf. Sci. Catal.,
´
2004, 154, 432; (b) C. Perego, S. Amarilli, A. Carati, C. Flego,
G. Pazzuconi, C. Rizzo and G. Bellussi, Microporous Mesoporous
Mater., 1999, 27, 345; (c) S. Biz and M. G. White, Microporous
Mesoporous Mater., 2000, 40, 159.
In summary, the enhancement of catalytic activity of
Al-M41 was achieved by improvement of the TIE method.
The parent M41 should be prepared at template/Si = 1.44.
The TIE treatment in a low pH solution with high Al contents
was also the key. The resulting Al-M41s with the Si/Al ratio of
20–30 have the large pore volumes and showed high catalytic
activity for the Biginelli reaction and the formyl C–H insertion
reaction.
11 The details are described in Table S1, ESIw.
12 See Fig. S8–10, ESIw.
13 (a) A. Corma, Chem. Rev., 1997, 97, 2373; (b) F. S. Xiao, Top.
Catal., 2005, 35, 9; (c) Z. Y. Wu, H. J. Wang, T. T. Zhuang,
L. B. Sun, Y. M. Wang and J. H. Zhu, Adv. Funct. Mater., 2008,
18, 82; (d) A. Yin, X. G. Guo, W. L. Dai and K. Fan, J. Phys.
Chem. C, 2010, 114, 8523.
14 The amount of solid catalysts used in literatures was more than 10
mg-cat mmol-aldehydeÀ1 2,15
.
15 (a) D. D. Dhavale, P. N. Patil and R. S. Mali, J. Chem. Res.,
Synop., 1994, 152; (b) B. S. Balaji and B. M. Chanda, Tetrahedron,
1998, 54, 13237; (c) P. Phukan, J. M. Mohan and A. Sudalai,
J. Chem. Soc., Perkin Trans. 1, 1999, 3685.
The authors gratefully acknowledge financial support
from the ministry of Education, Culture, Sports, Science and
Technology of Japan.
c
This journal is the Owner Societies 2010
Phys. Chem. Chem. Phys., 2010, 12, 14452–14455 14455