Organic Letters
Letter
(7) Pal, K.; Heinsch, A.; Berkessel, A.; Koner, A. L. Differentiation of
Folate-Receptor-Positive and -Negative Cells Using a Substrate-
Mimicking Fluorescent Probe. Chem. - Eur. J. 2017, 23, 15008−
15011.
(8) Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.;
Leamon, C. P. Folate receptor expression in carcinomas and normal
tissues determined by a quantitative radioligand binding assay. Anal.
Biochem. 2005, 338, 284−293.
(9) Boone, D. N.; Lee, A. V. Targeting the Insulin-like Growth
Factor Receptor: Developing Biomarkers from Gene Expression
Profiling. Crit. Rev. Oncog. 2012, 17, 161−173.
(10) Gao, M.; Su, H.; Lin, G.; Li, S.; Yu, X.; Qin, A.; Zhao, Z.;
Zhang, Z.; Tang, B. Z. Targeted imaging of EGFR overexpressed
cancer cells by brightly fluorescent nanoparticles conjugated with
cetuximab. Nanoscale 2016, 8, 15027−15032.
(11) Jung, K. H.; Park, J. W.; Paik, J. Y.; Quach, C. H. T.; Choe, Y.
S.; Lee, K. H. EGF receptor targeted tumor imaging with biotin-PEG-
EGF linked to Tc-99m-HYNIC labeled avidin and streptavidin. Nucl.
Med. Biol. 2012, 39, 1122−1127.
(12) Niers, J. M.; Chen, J. W.; Weissleder, R.; Tannous, B. A.
Enhanced in Vivo Imaging of Metabolically Biotinylated Cell Surface
Reporters. Anal. Chem. 2011, 83, 994−999.
(13) Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong,
K. S.; Kim, J. S. An Activatable Theranostic for Targeted Cancer
Therapy and Imaging. Angew. Chem., Int. Ed. 2014, 53, 4469−4474.
(14) Ren, W. X.; Han, J.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J.-H.;
Kim, J. S. Recent development of biotin conjugation in biological
imaging, sensing, and target delivery. Chem. Commun. 2015, 51,
10403−10418.
(15) Xia, C. F.; Zhang, Y.; Zhang, Y.; Boado, R. J.; Pardridge, W. M.
Intravenous siRNA of brain cancer with receptor targeting and avidin-
biotin technology. Pharm. Res. 2007, 24, 2309−2316.
(16) Sun, Q.; Sun, D.; Song, L.; Chen, Z.; Chen, Z.; Zhang, W.;
Qian, J. Highly Selective Fluorescent Turn-On Probe for Protein
Thiols in Biotin Receptor-Positive Cancer Cells. Anal. Chem. 2016,
88, 3400−3405.
(17) Shin, W. S.; Han, J.; Kumar, R.; Lee, G. G.; Sessler, J. L.; Kim,
J.-H.; Kim, J. S. Programmed activation of cancer cell apoptosis: A
tumor-targeted phototherapeutic topoisomerase I inhibitor. Sci. Rep.
2016, 6, 29018.
(18) Edelman, R. R.; Warach, S. Magnetic Resonance Imaging. N.
Engl. J. Med. 1993, 328, 708−716.
(19) Gambhir, S. S. Molecular imaging of cancer with positron
emission tomography. Nat. Rev. Cancer 2002, 2, 683−693.
(20) Kong, X.; Dong, B.; Zhang, N.; Wang, C.; Song, X.; Lin, W. A
unique red-emitting two-photon fluorescent probe with tumor-
specificity for imaging in living cells and tissues. Talanta 2017, 174,
357−364.
(21) Jang, J. H.; Kim, W. R.; Sharma, A.; Cho, S. H.; James, T. D.;
Kang, C.; Kim, J. S. Targeted tumor detection: guidelines for
developing biotinylated diagnostics. Chem. Commun. 2017, 53, 2154−
2157.
(22) Pal, K.; Koner, A. L. Rationally Designed Solvatochromic
Fluorescent Indoline Derivatives for Probing Mitochondrial Environ-
ment. Chem. - Eur. J. 2017, 23, 8610−8614.
component, and water-soluble fluorescent dye, with strong
solvatofluorochromism. The potentiality of the probe has been
comprehensively proven by its high fluorescence quantum
yield, photostability, thermostability, and retention of
fluorescence intensity in a wide variety of buffer solutions.
After confirming BiR mediated endocytosis, we successfully
employed this molecule to differentiate between BiR positive
(HeLa) and negative (HEK-293) cells. The applicability of the
probe was also investigated with 3D spheroid and 2P
microscopy. We firmly believe that this presented strategy
with an environment-sensitive small organic dye will be highly
important for pretherapeutic diagnosis.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Details of synthesis and cell-culture protocol, character-
ization by NMR, mass spectrometry and UV−vis
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the financial support from Department of
Biotechnology (DBT, BT/PR14498/NNT/28/880/2015),
India. K.P. gratefully acknowledges CSIR, India for his doctoral
fellowship. We acknowledge sophisticated instrumentation
facility IIT Indore for the two-photon imaging. We thank
Mr. Rupam Roy for his help with NMR measurements.
REFERENCES
■
(1) Lv, L.; Liu, C. X.; Chen, C. X.; Yu, X. X.; Chen, G. H.; Shi, Y. H.;
Qin, F. C.; Ou, J. B.; Qiu, K. F.; Li, G. C. Quercetin and doxorubicin
co-encapsulated biotin receptor-targeting nanoparticles for minimiz-
ing drug resistance in breast cancer. Oncotarget 2016, 7, 32184−
32199.
(2) Heo, D. N.; Yang, D. H.; Moon, H. J.; Lee, J. B.; Bae, M. S.; Lee,
S. C.; Lee, W. J.; Sun, I. C.; Kwon, I. K. Gold nanoparticles surface-
functionalized with paclitaxel drug and biotin receptor as theranostic
agents for cancer therapy. Biomaterials 2012, 33, 856−866.
(3) Qu, W.; Ren, S.; Kuang, Y.; Jiang, X. J.; Zhuo, R. X.; Zhang, X. Z.
Mimicking the Biological Ligand-Receptor Principle for Universal
Target Gene Delivery Mediated by Avidin-Biotin Interaction. Adv.
Healthcare Mater. 2013, 2, 418−421.
(4) Ren, W. X.; Han, J. Y.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J. H.;
Kim, J. S. Recent development of biotin conjugation in biological
imaging, sensing, and target delivery. Chem. Commun. 2015, 51,
10403−10418.
(5) Dorsam, R. T.; Gutkind, J. S. G-protein-coupled receptors and
cancer. Nat. Rev. Cancer 2007, 7, 79−94.
(6) Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik,
D. Vitamin-mediated targeting as a potential mechanism to increase
drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625−1633.
(23) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near
infrared analyte-responsive fluorescent probes based on organic
fluorophore platforms for fluorescence imaging. Chem. Soc. Rev.
2013, 42, 622−661.
(24) Koner, A. L.; Krndija, D.; Hou, Q.; Sherratt, D. J.; Howarth, M.
Hydroxy-Terminated Conjugated Polymer Nanoparticles Have Near-
Unity Bright Fraction and Reveal Cholesterol-Dependence of IGF1R
Nanodomains. ACS Nano 2013, 7, 1137−1144.
(25) Chen, J.; Chen, Q.; Gao, C.; Zhang, M.; Qin, B.; Qiu, H. A
SiO2 NP-DNA/silver nanocluster sandwich structure-enhanced
fluorescence polarization biosensor for amplified detection of hepatitis
B virus DNA. J. Mater. Chem. B 2015, 3, 964−967.
D
Org. Lett. XXXX, XXX, XXX−XXX