Journal of the American Chemical Society
Article
suspension of 2-Cl became immediately clear and colorless. After the
mixture was stirred for 2 h, the solvent was removed under vacuum.
The withe residue was washed with three portions of methanol (4 mL)
and dried under vacuum, affording 3-Cl in 91% yield (397 mg).
ASSOCIATED CONTENT
Supporting Information
■
*
S
Colorless crystals of 3-Cl·CH Cl2 were easily obtained by slow
2
1
Additional experimental and computational details
diffusion of ether into a CH Cl solution. H NMR (499.42 MHz;
2
2
3
CDCl ): δ 7.40−7.48 (m, 12H), 7.53 (t, 4 H, o-P(Sb)C H , J
=
3
6
3
4
H−H
3
7
.00 Hz), 7.60 (q 8 H, J
= 7.00 Hz), 7.70 (q, 2 H, J
= 8.00
Optimized stuructures (XYZ)
Crystallographic data (CIF)
H−H
H−H
3
13
1
Hz), 8.74 (d, 2 H, o-P(Sb)C H , J
= 8.00 Hz). C{ H} NMR
6
4
H−H
(
125.58 MHz; CDCl ): δ 121.8 (broad, weak, t, JC−P = 29.5 Hz), 127.0
3
(
t, JC−P = 31.0 Hz), 127.4 (t, JC−P = 31.3 Hz), 129.0 (t of d, −C H ,
6
5
AUTHOR INFORMATION
■
*
CH, JC−P = 7.8 Hz, JC−F = 5.9 Hz) 130.9 (t of d, JC−P = 11.8 Hz, J
3
Hz), 133.8 (broad), 134.0 (t of d, −C H , CH, J = 9.4 Hz, JC−F
6
=
C−F
.1 Hz), 132.3 (d, −C H , CH, J
= 3.6 Hz), 133.3 (d, JC−P = 17.1
6
5
C−P
=
6
5
C−P
.4 Hz), 134.9 (m). 3 P{ H} NMR (202.16 MHz; CDCl ): δ = 83.5
1
1
Notes
3
d, JP−Fax = 16.2 Hz). 1 F{ H} NMR (469.89 MHz; CDCl ): δ −72.0
9
1
The authors declare no competing financial interest.
(
3
(
d, 2F , JF
= 17.0 Hz), −133.3 (pseudoquintet, 1F , JF
= 17.0
eq
eq−Fax
a
ax−Feq
ACKNOWLEDGMENTS
■
Hz, JFax−P = 16.2 Hz). Mp: 238 °C dec. Anal. Calcd for 3-Cl
This work was supported by the National Science Foundation
(CHE-1300371), the Welch Foundation (A-1423), and Texas
A&M University (Arthur E. Martell Chair of Chemistry).
(
C H ClF P AuSb): C, 46.31; H, 3.02. Found: C, 46.01; H, 3.22. For
36
28
3 2
Synthesis of [3][SbF ]. A CH Cl (2 mL) solution of AgSbF
6
2
2
6
REFERENCES
■
(
73.6 mg, 0.21 mmol) was slowly added to a CH Cl solution (3 mL)
2 2
(
3
1) (a) Levason, W.; McAuliffe, C. A. Acc. Chem. Res. 1978, 11, 363−
68. (b) Champness, N. R.; Levason, W. Coord. Chem. Rev. 1994, 133,
15−217. (c) Silvestru, C.; Breunig, H. J.; Althaus, H. Chem. Rev.
1999, 99, 3277−3328. (d) Schulz, S. Coord. Chem. Rev. 2001, 215, 1−
37. (e) Schulz, S. Struct. Bonding (Berlin) 2006, 103, 117−166.
(f) Breunig, H. J.; Ghesner, I. Adv. Organomet. Chem. 2003, 49, 95−
131. (g) Werner, H. Angew. Chem., Int. Ed. 2004, 43, 938−954.
(h) Levason, W.; Reid, G. Coord. Chem. Rev. 2006, 250, 2565−2594.
(i) Burt, J.; Levason, W.; Reid, G. Coord. Chem. Rev. 2014, 260, 65−
115.
of complex 3-Cl (200 mg, 0.21 mmol). The resulting cloudy solution
was stirred for 1 h, filtered, and analyzed by 31P NMR spectroscopy,
1
which confirmed full conversion of 3-Cl into [3][SbF ]. The salt
6
[
3][SbF ] was isolated by evaporation of the solvent and washing with
6
two portions of Et O (2 mL). The salt [3][SbF ] was obtained in 75%
2
6
yield (184 mg) as a colorless powder. Crystals of [3][SbF ] were
6
obtained by slow diffusion of pentane into a concentrated CH Cl2
2
solution at room temperature under an inert atmosphere using a
1
3
glovebox. H NMR (499.42 MHz; CDCl ): δ 7.37 (q, 2 H, J
=
3
H−H
3
(
2) (a) Benjamin, S. L.; Levason, W.; Reid, G.; Warr, R. P.
Organometallics 2012, 31, 1025−1034. (b) Benjamin, S. L.; Levason,
W.; Light, M. E.; Reid, G.; Rogers, S. M. Organometallics 2014, 33,
5
2
.99 Hz), 7.54−7.66 (m, 22H), 7.79 (t, 2 H, J
H, o-P(Sb)C H , J = 7.99 Hz) C{ H} NMR (125.58 MHz;
= 7.99 Hz), 8.42 (d,
H−H
3
13
1
6
4
H−H
CDCl ): δ 124.7 (t, J
Hz), 132.2 (t, J = 4.02 Hz), 133.5 (s, −C H , CH), 134.1 (t, −C H ,
= 30.8 Hz), 130.1 (t, −C H , CH, J
= 6.03
C−P
3
C−P
6
5
2
(
693−2695.
6
5
6
5
3) (a) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231−238.
CH, J
= 7.16 Hz), 134.1 (s), 135.7 (s), quaternary carbon nuclei
C−P
31
1
(b) Dammann, C. B.; Hughey, J. L.; Jicha, D. C.; Meyer, T. J.;
not detected. P{ H} NMR (202.16 MHz; CDCl ): δ 66.3 (s).
3
Rakita, P. E.; Weaver, T. R. Inorg. Chem. 1973, 12, 2206−2209.
c) Chan, D. M. T.; Marder, T. B. Angew. Chem., Int. Ed. Engl. 1988,
1
9
1
F{ H} NMR (469.89 MHz; CDCl ): δ −55.1 (s, 2F ), −147.0 (s,
3
eq
(
2
1
[
2
F ), −122.3 (broad, SbF ). Mp: 205 °C dec. Anal. Calcd for
a
6
7, 442−443. (d) Parkin, G. Organometallics 2006, 25, 4744−4747.
3][SbF ] (C H F P AuSb): C, 38.13; H, 2.49. Found: C, 37.86; H,
6 36 28 9 2
(e) Hill, A. F. Organometallics 2006, 25, 4741−4743. (f) Fontaine, F.-
G.; Boudreau, J.; Thibault, M.-H. Eur. J. Inorg. Chem. 2008, 2008,
General Procedure for Catalytic Hydroamination Reactions.
Catalytic reactions were carried out in air. In a typical reaction, the
alkyne (∼0.5 mmol) was mixed with the amine (∼0.55 mmol) in
5
439−5454. (g) Braunschweig, H.; Dewhurst, R. D.; Schneider, A.
Chem. Rev. 2010, 110, 3924−3957. (h) Bouhadir, G.; Amgoune, A.;
Bourissou, D. Adv. Organomet. Chem. 2010, 58, 1−107. (i) Amgoune,
A.; Bourissou, D. Chem. Commun. 2011, 47, 859−871. (j) Braunsch-
weig, H.; Dewhurst, R. D. Dalton Trans. 2011, 40, 549−558.
(k) Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Chem. Rev. 2012,
112, 4329−4346. (l) Owen, G. R. Chem. Soc. Rev. 2012, 41, 3535−
CDCl (2 mL). After addition of the catalyst (3.5 mol % loading),
3
1
conversion was estimated using H NMR spectroscopy with 1,4-di-
tert-butylbenzene.
3
1
(
546. (m) Kameo, H.; Nakazawa, H. Chem. - Asian J. 2013, 8, 1720−
734. (n) Mingos, D. M. P. J. Organomet. Chem. 2014, 751, 153−173.
Computational Details. Density functional theory (DFT)
structural optimizations were carried with the Gaussian 09 suite of
programs with effective core potentials on all heavy atoms (functional
BP86; mixed basis set Sb/Au cc-pVTZ-PP, P/Cl 6-31g(d), C/O/H 6-
4) (a) Wade, C. R.; Gabbaï, F. P. Angew. Chem., Int. Ed. 2011, 50,
7
369−7372. (b) Ke, I.-S.; Jones, J. S.; Gabbaï, F. P. Angew. Chem., Int.
Ed. 2014, 53, 2633−2637. (c) Wade, C. R.; Ke, I.-S.; Gabbaï, F. P.
Angew. Chem., Int. Ed. 2012, 51, 478−481. (d) Jones, J. S.; Wade, C.
R.; Gabbaï, F. P. Angew. Chem., Int. Ed. 2014, 53, 8876−8879.
(
(
(
3
1g, F 6-31+g(d′)). The optimized structures were subjected to a
26
NBO analysis. The resulting NBOs were visualized and plotted with
the Jimp 2 program.
27
5) Ke, I.-S.; Gabbaï, F. P. Inorg. Chem. 2013, 52, 7145−7151.
6) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84−87.
7) (a) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J.
Crystallographic Measurements. The crystallographic measure-
ments were performed at 110(2) K using a Bruker APEX-−II CCD
area detector diffractometer (Mo Kα radiation, λ = 0.71069 Å). In
each case, a specimen of suitable size and quality was selected and
mounted onto a nylon loop. The structures were solved by direct
methods, which successfully located most of the non-hydrogen atoms.
Semiempirical absorption corrections were applied. Subsequent
refinement on F2 using the SHELXTL/PC package (version 6.1)
allowed location of the remaining non-hydrogen atoms.
Chem. Rev. 2015, 115, 2596−2697. (b) Mizushima, E.; Chatani, N.;
Kakiuchi, F. J. Organomet. Chem. 2006, 691, 5739−5745.
(
8) (a) Hahn, C.; Cruz, L.; Villalobos, A.; Garza, L.; Adeosun, S.
Dalton Trans. 2014, 43, 16300−16309. (b) Wang, Y.; Wang, Z.; Li, Y.;
Wu, G.; Cao, Z.; Zhang, L. Nat. Commun. 2014, 5, 3470. (c) Anokhin,
M. V.; Murashkina, A. V.; Averin, A. D.; Beletskaya, I. P. Mendeleev
Commun. 2014, 24, 332−333. (d) Malhotra, D.; Mashuta, M. S.;
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX