Journal of the American Chemical Society
Page 10 of 13
R.; Kamiya, N. Crystal Structure of Oxygen-Evolving Photosystem II at a
Resolution of 1.9 Å . Nature 2011, 473, 55.
3) Young, I. D.; Ibrahim, M.; Chatterjee, R.; Gul, S.; Fuller, F. D.; Koroi-
25, 159. (c) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of Reactive Non-
Heme Metal-Oxygen Intermediates in Chemical and Enzymatic Reactions.
J. Am. Chem. Soc. 2014, 136, 13942.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
dov, S.; Brewster, A. S.; Tran, R.; Alonso-Mori, R.; Kroll, T.; Michels-Clark,
T.; Laksmono, H.; Sierra, R. G.; Stan, C. A.; Hussein, R.; Zhang, M.; Douthit,
L.; Kubin, M.; de Lichtenberg, C.; Vo Pham, L.; Nilsson, H.; Cheah, M. H.;
Shevela, D.; Saracini, C.; Bean, M. A.; Seuffert, I.; Sokaras, D.; Weng, T-C.;
Pastor, E.; Weninger, C.; Fransson, T.; Lassalle, L.; Bräuer, P.; Aller, P.;
Docker, P. T.; Andi, B.; Orville, A. M.; Glownia, J. M.; Nelson, S.; Sikorski,
M.; Zhu, D.; Hunter, M. S.; Lane, T. J.; Aquila, A.; Koglin, J. E.; Robinson, J.;
Liang, M.; Boutet, S.; Lyubimov, A. Y.; Uervirojnangkoorn, M.; Moriarty, N.
W.; Liebschner, D.; Afonine, P. V.; Waterman, D. G.; Evans, G.; Wernet, P.;
Dobbek, H.; Weis, W. I.; Brunger, A. T.; Zwart, P. H.; Adams, P. D.; Zouni,
A.; Messinger, J.; Bergmann, U.; Sauter, N. K.; Kern, J.; Yachandra, V. K.;
Yano, J. Structure of Photosystem II and Substrate Binding at Room Tem-
perature. Nature 2016, 540, 453.
(10) (a) Kal, S.; Que, L., Jr. Dioxygen Activation by Nonheme Iron En-
zymes with the 2-His-1-carboxylate Facial Triad That Generate High-Valent
Oxoiron Oxidants. J. Biol. Inorg. Chem. 2017, 22, 339. (b) Puri, M.; Que, L.,
Jr. Toward the Synthesis of More Reactive S = 2 Non-Heme Oxoiron(IV)
Complexes. Acc. Chem. Res. 2015, 48, 2443. (c) McDonald, A. R.; Que, L.
Jr. High-Valent Nonheme Iron-Oxo Complexes: Synthesis, Structure, and
Spectroscopy. Coord. Chem. Rev. 2013, 257, 414.
(11) (a) Chen, Z.; Yin, G. The Reactivity of the Active Metal Oxo and Hy-
droxo Intermediates and Their Implications in Oxidations. Chem. Soc. Rev.
2015, 44, 1083. (b) Yin, G. Understanding the Oxidative Relationships of
the Metal Oxo, Hydroxo, and Hydroperoxide Intermediates with Manga-
nese(IV) Complexes Having Bridged Cyclams: Correlation of the Physico-
chemical Properties with Reactivity. Acc. Chem. Res. 2013, 46, 483.
(12) Collins, T. J.; Ryabov, A. D. Targeting of High-Valent Iron-TAML Ac-
tivators at Hydrocarbons and Beyond. Chem. Rev. 2017, 117, 9140.
(13) (a) Baglia, R. A.; Zaragoza, J. P. T.; Goldberg, D. P. Biomimetic Reac-
tivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes.
Chem. Rev. 2017, 117, 13320. (b) Sahu, S.; Goldberg, D. P. Activation of
Dioxygen by Iron and Manganese Complexes: A Heme and NonHeme Per-
spective. J. Am. Chem. Soc. 2016, 138, 11410. (c) Neu, H. M.; Baglia, R. A.;
Goldberg, D. P. A Balancing Act: Stability Versus Reactivity of Mn(O) Com-
plexes. Acc. Chem. Res. 2015, 48, 2754.
(14) (a) Sankaralingam, M.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Ampho-
teric Reactivity of Metal-Oxygen Complexes in Oxidation Reactions. Coord.
Chem. Rev. 2018, 365, 41. (b) Hong, S.; Lee, Y.-M.; Ray, K.; Nam, W. Di-
oxygen Activation Chemistry by Synthetic Mononuclear Nonheme Iron,
Copper and Chromium Complexes. Coord. Chem. Rev. 2017, 334, 25. (c)
Fukuzumi, S.; Kojima, T.; Lee, Y.-M.; Nam, W. High-Valent Metal-Oxo
Complexes Generated in Catalytic Oxidation Reactions Using Water as an
Oxygen Source. Coord. Chem. Rev. 2017, 333, 44.
(15) Nam, W. Synthetic Mononuclear Nonheme Iron-Oxygen Intermedi-
ates. Acc. Chem. Res. 2015, 48, 2415.
(16) (a) Cook, S. A.; Borovik, A. S. Molecular Designs for Controlling the
Local Environments Around Metal Ions. Acc. Chem. Res. 2015, 48, 2407. (b)
Cook, S. A.; Hill, E. A.; Borovik, A. S. Lessons from Nature: A Bio-Inspired
Approach to Molecular Design. Biochemistry 2015, 54, 4167.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
4) (a) Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. A
Synthetic Mn Ca-Cluster Mimicking the Oxygen-Evolving Center of Pho-
4
tosynthesis. Science 2015, 348, 690. (b) Sun, L. A Closer Mimic of the Ox-
ygen Evolution Complex of Photosystem II. Science 2015, 348, 635.
(5) (a) Yano, J.; Yachandra, V. Mn Ca Cluster in Photosynthesis: Where
4
and How Water is Oxidized to Dioxygen. Chem. Rev. 2014, 114, 4175. (b)
Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Molecular Catalysts for
Water Oxidation. Chem. Rev. 2015, 115, 12974. (c) Young, K. J.; Brennan,
B. J.; Tagore, R.; Brudvig, G. W. Photosynthetic Water Oxidation: Insights
from Manganese Model Chemistry. Acc. Chem. Res. 2015, 48, 567. (d)
Najafpour, M. M.; Renger, G.; Hołyńska, M.; Moghaddam, A. N.; Aro, E.-
M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J.-R.; Allakhverdiev,
S. I. Manganese Compounds as Water-Oxidizing Catalysts: from the Natural
Water-Oxidizing Complex to Nanosized Manganese Oxide Structures.
Chem. Rev. 2016, 116, 2886. (e) Davis, K. M.; Pushkar, Y. N. Structure of
the Oxygen Evolving Complex of Photosystem II at Room Temperature. J.
Phys. Chem. B 2015, 119, 3492.
(6) (a) Najafpour, M. M.; Heidari, S.; Balaghi, S. E.; Hołyńska, M.; Sadr,
M. H.; Soltani, B.; Khatamian, M.; Larkum, A. W.; Allakhverdiev, S. I. Pro-
posed Mechanisms for Water Oxidation by Photosystem II and Nanosized
Manganese Oxides. Biochim. Biophys. Acta 2017, 1858, 156. (b) Yamaguchi,
K.; Shoji, M.; Isobe, H.; Yamanaka, S.; Kawakami, T.; Yamada, S.; Katouda,
M.; Nakajima, T. Theory of Chemical Bonds in Metalloenzymes XXI. Pos-
sible Mechanisms of Water Oxidation in Oxygen Evolving Complex of Pho-
tosystem II. Mol. Phys. 2018, 116, 717. (c) Chen, C.; Li, Y.; Zhao, G.; Yao,
(17) (a) Garrido-Barros, P.; Gimbert-Suriñach, C.; Matheu, R.; Sala, X.;
Llobet, A. How to Make an Efficient and Robust Molecular Catalyst for Wa-
ter Oxidation. Chem. Soc. Rev. 2017, 46, 6088. (b) Sala, X.; Maji, S.; Bofill,
R.; García-Antón, J.; Escriche, L.; Llobet, A. Molecular Water Oxidation
Mechanisms Followed by Transition Metals: State of the Art. Acc. Chem.
Res. 2014, 47, 504.
R.; Zhang, C. Natural and Artificial Mn
Reaction. ChemSusChem 2017, 10, 4403. (d) Pushkar, Y. N.; Yano, J.; Sauer,
K.; Boussac, A.; Yachandra, V. K. Structural Changes in the Mn Ca Cluster
4
Ca Cluster for the Water Splitting
4
and the Mechanism of Photosynthetic Water Splitting. Proc. Natl. Acad. Sci.
USA 2008, 105, 1879. (e) Pushkar, Y. N.; Davis, K. M.; Palenik, M. Model
of the Oxygen Evolving Complex Which is Highly Predisposed to O-O Bond
Formation. J. Phys. Chem. Lett. 2018, 9, 3525.
(18) (a) Ishizuka, T.; Kotani, H.; Kojima, T. Characteristics and Reactivity
of Ruthenium-Oxo Complexes. Dalton Trans. 2016, 45, 16727. (b) Ishizuka,
IV
T.; Ohzu, S.; Kojima, T. Oxidation of Organic Substrates with Ru =O
(
7) (a) Kanady, J. S.; Tsui, E. Y.; Day, M. W.; Agapie, T. A Synthetic Model
Complexes Formed by Proton-Coupled Electron Transfer. Synlett 2014, 25,
1667.
of the Mn Ca Subsite of the Oxygen-Evolving Complex in Photosystem II.
3
Science 2011, 333, 733. (b) Tsui, E. Y.; Kanady, J. S.; Agapie, T. Synthetic
Cluster Models of Biological and Heterogeneous Manganese Catalysts for
(19) Lebedev, D.; Pineda-Galvan, Y.; Tokimaru, Y.; Fedorov, A.; Kaeffer, N.;
V
Copéret, C.; Pushkar, Y. The Key Ru =O Intermediate of Site-Isolated
O
2
Evolution. Inorg. Chem. 2013, 52, 13833. (c) Tsui, E. Y.; Tran, R.; Yano,
Mononuclear Water Oxidation Catalyst Detected by In Situ X-Ray Absorp-
tion Spectroscopy. J. Am. Chem. Soc. 2018, 140, 451.
J.; Agapie, T. Redox-Inactive Metals Modulate the Reduction Potential in
Heterometallic Manganese-Oxido Clusters. Nat. Chem. 2013, 5, 293.
(20) (a) Pfaff, F. F.; Kundu, S.; Risch, M.; Pandian, S.; Heims, F.;
Pryjomska-Ray, I.; Haack, P.; Metzinger, R.; Bill, E.; Dau, H.; Comba, P.;
Ray, K. An Oxocobalt(IV) Complex Stabilized by Lewis Acid Interactions
with Scandium(III) Ions. Angew. Chem., Int. Ed. 2011, 50, 1711. (b) Hong,
S.; Pfaff, F. F.; Kwon, E.; Wang, Y.; Seo, M. S.; Bill, E.; Ray, K.; Nam, W.
Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Com-
plex Stabilized by Binding Redox-Inactive Metal Ions. Angew. Chem., Int.
Ed. 2014, 53, 10403. (c) Wang, B.; Lee, Y.-M.; Tcho, W.-Y.; Tussupbayev,
S.; Kim, S.-T.; Kim, Y.; Seo, M. S.; Cho, K.-B.; Dede, Y.; Keegan, B. C.; Ogura,
T.; Kim, S. H.; Ohta, T.; Baik, M.-H.; Ray, K.; Shearer, J.; Nam, W. Synthesis
and Reactivity of a Mononuclear Non-Haem Cobalt(IV)-Oxo Complex.
Nat. Commun. 2017, 8, 14839.
(
8) (a) Bang, S.; Lee, Y.-M.; Hong, S.; Cho, K.-B.; Nishida, Y.; Seo, M. S.;
Sarangi, R.; Fukuzumi, S.; Nam, W. Redox-Inactive Metal Ions Modulate
the Reactivity and Oxygen Release of Mononuclear Non-Haem Iron(III)-
Peroxo Complexes. Nat. Chem. 2014, 6, 934. (b) Lionetti, D.; Agapie, T.
How Calcium Affects Oxygen Formation. Nature 2014, 513, 495. (c) Bae, S.
H.; Lee, Y.-M.; Fukuzumi, S.; Nam, W. Fine Control of the Redox Reactivity
of a Nonheme Iron(III)-Peroxo Complex by Binding Redox-Inactive Metal
Ions. Angew. Chem., Int. Ed. 2017, 56, 801.
(
9) (a) Engelmann, X.; Monte-Pérez, I.; Ray, K. Oxidation Reactions with
Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. Angew.
Chem., Int. Ed. 2016, 55, 7632. (b) Ray, K.; Heims, F.; Schwalbe, M.; Nam,
W. High-Valent Metal-Oxo Intermediates in Energy Demanding Processes:
From Dioxygen Reduction to Water Splitting. Curr. Opin. Chem. Biol. 2015,
ACS Paragon Plus Environment