Li Yang et al. / Chinese Journal of Catalysis 41 (2020) 1152–1160
1159
8943–9021.
References
[24] J. B. Peng, H. Q. Geng, F. P. Wu, D. Li, X.-F. Wu, J. Catal., 2019, 375,
519–523.
[25] J. W. Li, S. Y. Wang, S. C. Zou, H. M. Huang, Commun. Chem., 2019, 2,
1–9.
[26] B. Gao, G. Y. Zhang, X. B. Zhou, H. M. Huang, Chem. Sci., 2018, 9,
380–386.
[27] L. Yang, L. J. Shi, Q. Xing, K. W. Huang, C. G. Xia, F. W. Li, ACS Catal.,
2018, 8, 10340–10348.
[28] F. Sha, H. Alper, ACS Catal., 2017, 7, 2220–2229.
[29] J. Liu, H. Q. Li, A. Spannenberg, R. Franke, R. Jackstell, M. Beller,
Angew. Chem. Int. Ed., 2016, 55, 13544–13548.
[30] T. Y. Xu, F. Sha, H. Alper, J. Am. Chem. Soc., 2016, 138,
6629–6635.
[31] X. Y. Li, X. W. Li, N. Jiao, J. Am. Chem. Soc., 2015, 137, 9246–9249.
[32] H. Q. Li, K. W. Dong, H. Neumann, M. Beller, Angew. Chem. Int. Ed.,
2015, 54, 10239–10243.
[1] J. S. Zhu, C. J. Li, K. Y. Tsui, N. Kraemer, J.-H. Son, M. J. Haddadin, D. J.
Tantillo, M. J. Kurth, J. Am. Chem. Soc., 2019, 141, 6247–6253.
[2] M. Rauser, R. Eckert, M. Gerbershagen, M. Niggemann, Angew.
Chem. Int. Ed., 2019, 58, 6713–6717.
[3] J. H. Gui, C. M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M. E.
Mertzman, W. J. Pitts, T. E. L. Cruz, M. A. Schmidt, N. Darvatkar, S.
R. Natarajan, P. S. Baran, Science, 2015, 348, 886–891.
[4] N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, Wein-
heim, 2001, 1–2.
[5] C. W. Cheung, J. A. Ma, X. L. Hu, J. Am. Chem. Soc., 2018, 140,
6789–6792.
[6] T. V. Nykaza, A. Ramirez, T. S. Harrison, M. R. Luzung, A. T. Ra-
dosevich, J. Am. Chem. Soc., 2018, 140, 3103–3113.
[7] C. W. Cheung, M. L. Ploeger, X. L. Hu, Nat. Commun., 2017, 8,
14878–14887.
[33] G. Y. Zhang, B. Gao, H. M. Huang, Angew. Chem. Int. Ed., 2015, 54,
7657–7661.
[34] K. W. Dong, X. J. Fang, R. Jackstell, G. Laurenczy, Y. H. Li, M. Beller, J.
Am. Chem. Soc., 2015, 137, 6053–6058.
[35] X. J. Fang, R. Jackstell, M. Beller, Angew. Chem., Int. Ed., 2013, 52,
14089–14093.
[36] J. B. Peng, H. Q. Geng, D. Li, X. X. Qi, J. Ying, X. F. Wu, Org. Lett.,
2018, 20, 4988–4993.
[37] F. Zhou, D. S. Wang, X. Y. Guan, T. G. Driver, Angew. Chem. Int. Ed.,
2017, 56, 4530–4534.
[38] C. W. Cheung, M. Leendert Ploeger, X. L. Hu, Chem. Sci., 2018, 9,
655–659.
[8] M. Shevlin, X. Y. Guan, T. G. Driver, ACS Catal., 2017, 7, 5518–5522.
[9] C. W. Cheung, M. L. Ploeger, X. L. Hu, ACS Catal., 2017, 7,
7092–7096.
[10] R. Rubio-Presa, M. R. Pedrosa, M. A. Fernandez-Rodríguez, F. J.
Arnaiz, R. Sanz, Org. Lett., 2017, 19, 5470–5473.
[11] Z. C. Lin, Z. Y. Hu, X. Zhang, J. H. Dong, J. B. Liu, D. Z. Chen, X. X. Xu,
Org. Lett., 2017, 19, 5284–5287.
[12] M. Rauser, C. Ascheberg, M. Niggemann, Angew. Chem. Int. Ed.,
2017, 56, 11570–11574.
[13] C. W. Cheung, X. L. Hu, Nat. Commun., 2016, 7, 12494.
[14] K. L. Zhu, M. P. Shaver, S. P. Thomas, Chem. Sci., 2016, 7,
3031–3035.
[39] H. R. Liang, L. Zhang, X. L. Zheng, H. Y. Fu, M. L. Yuan, R. X. Li, H.
Chen, Chin. J. Catal., 2012, 33, 977–981.
[15] N. Jana, F. Zhou, T. G. Driver, J. Am. Chem. Soc., 2015, 137,
6738–6741.
[40] A. C. Brezny, C. R. Landis, J. Am. Chem. Soc., 2017, 139, 2778–2785.
[41] W. L. Ren, W. J. Chang, J. Dai, Y. Shi, J. F. Li, Y. A. Shi, J. Am. Chem.
Soc., 2016, 138, 14864–14867.
[42] D. Semeril, C. Jeunesse, D. Matt, L. Toupet, Angew. Chem. Int. Ed.,
2006, 45, 5810–5814.
[43] S. C. Bourque, F. Maltais, W. J. Xiao, O. Tardif, H. Alper, P. Arya, L. E.
Manzer, J. Am. Chem. Soc., 1999, 121, 3035–3038.
[44] J. B. Peng, X. F. Wu, Angew. Chem. Int. Ed., 2018, 57, 1152–1160.
[45] D. Ding, G. H. Zhu, X. F. Jiang, Angew. Chem. Int. Ed., 2018, 57,
9028–9032.
[16] T. J. Mooibroek, E. Bouwman, E. Drent, Organometallics, 2012, 31,
4142–4156.
[17] T. J. Mooibroek, L. Schoon, E. Bouwman, E. Drent, Chem. Eur. J.,
2011, 17, 13318–13333.
[18] K.-S. Ju, R. E. Parales, Microbiol. Mol. Biol. Rev., 2010, 74, 250–272.
[19] A. M. Tafesh, J. Weiguny, Chem. Rev., 1996, 96, 2035–2052.
[20] R. M. Figueiredo, J. S. Suppo, J. M. Campagne, Chem. Rev., 2016,
116, 12029–12122.
[21] V. R. Pattabiraman, J. W. Bode, Nature, 2011, 480, 471–479.
[22] Q. J. Yuan, M. S. Sigman, J. Am. Chem. Soc., 2018, 140, 6527–6530.
[23] X. G. Guo, A. Facchetti, T. J. Marks, Chem. Rev., 2014, 114,
[46] D. Ding, T. Mou, M. H. Feng, X. F. Jiang, J. Am. Chem. Soc., 2016, 138,
Graphical Abstract
Chin. J. Catal., 2020, 41: 1152–1160 doi: 10.1016/S1872-2067(20)63561-6
Intermediate formation enabled regioselective access to
amide in the Pd-catalyzed reductive aminocarbonylation
of olefin with nitroarene
Li Yang, Lijun Shi, Chungu Xia *, Fuwei Li *
Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of
Sciences
An efficient palladium-catalyzed reductive aminocarbonylation of
olefins with nitroarenes was developed, providing facile access to
amides with excellent regioselectivities enabled by the different
N-intermediate formation reduced from nitroarene. This route is
significantly different from the previous ligand-controlled regiose-
lective synthesis methods of amides via aminocarbonylation of
olefins with amines.