Photochemistry and Photobiology, 2007, 83 533
methylpterin in alkaline aqueous solutions. Helv. Chim. Acta 87,
349–365.
7. Cabrerizo, F. M., C. Lorente, M. Vignoni, R. Cabrerizo, A. H.
Thomas and A. L. Capparelli (2005) Photochemical behaviour of
6-methylpterin in aqueous solutions: Generation of reactive oxy-
gen species. Photochem. Photobiol. 81, 793–801.
that the amine group of the PABA unit of the former
compounds plays a dominant role in the physical deactivation
of 1O2 through charge-transfer-induced quenching, in agree-
ment with published data for different types of amines (25,26).
Finally the biological relevance of the results obtained can
also be evaluated. At physiological pH (ꢄ7.4) both acid and
basic forms of PTs are present. Several unconjugated PTs
accumulate in white skin patches of patients affected by vitiligo,
zones of the skin where the protection against UV radiation
fails due to the lack of melanin (33). In addition, unconjugated
PTs are good singlet oxygen photosensitizers. Therefore the
reactions studied in this work could also take place in vivo.
8. Cabrerizo, F. M., M. L. Dantola, A. H. Thomas, C. Lorente,
´
A. M. Braun, E. Oliveros and A. L. Capparelli (2004) Photooxi-
dation of pterin in aqueous solutions: Biological and biomedical
implications. Chem. Biodiv. 1, 1800–1811.
9. Nichol, C. A., G. K. Smith and D. S. Duch (1985) Biosynthesis
and metabolism of tetrahydrobiopterin and molybdopterin. Annu.
Rev. Biochem. 54, 729–764.
10. Lorente, C. and A. H. Thomas (2006) Photophysics and photo-
chemistry of pterins in aqueous solution. Acc. Chem. Res. 39, 395–
402.
Acknowledgements—The present work was partially supported by
11. Albert, A. (1953) Quantitative studies of the acidity of naturally
occurring substances for trace metals. Biochem. J. 54, 646–654.
12. Thomas, A. H., C. Lorente, A. L. Capparelli, M. R. Pokhrel, A.
M. Braun and E. Oliveros (2002) Fluorescence of pterin, 6-form-
ylpterin, 6-carboxypterin and folic acid in aqueous solutions: pH
effects. Photochem. Photobiol. Sci. 1, 421–426.
13. Cabrerizo, F. M., G. Petroselli, C. Lorente, A. L. Capparelli, A.
H. Thomas, A. M. Braun and E. Oliveros (2005) Substituent
effects on the photophysical properties of pterin derivatives in
acidic and alkaline aqueous solutions. Photochem. Photobiol. 81,
1234–1240.
14. Salomaa, P., L. L. Schaleger and F. A. Long (1964) Solvent
deuterium isotope effects on acid–base equilibria. J. Am. Chem.
Soc. 86, 1–7.
15. Tournaire, C., S. Croux, M.-T. Maurette, I. Beck, M. Hocquaux,
A. M. Braun and E. Oliveros (1993) Antioxidant activity of flav-
onoids: Efficiency of singlet oxygen (1Dg) quenching. J. Photo-
chem. Photobiol. B, Biol. 19, 205–215.
Consejo Nacional de Investigaciones Cientificas y Te
CET-PIP 02470 ⁄ 00 and 6301 ⁄ 05), Agencia de Promocio
Tecnologica (ANPCyT Grant PICT 06-12610) and Universidad
Nacional de La Plata (UNLP). A.L.C., A.M.B. and E.O. thank the
Secretarıa de Ciencia, Tecnologıa e Innovacion Productiva (SECyT,
´
cnicas (CONI-
´
n Cientıfica y
´
´
´
´
´
Argentina) and Bundesministerium fur Forschung und Bildung
(BMFB, Germany) for financial support of their project EVI ⁄ 013.
F.M.C. and C.L. thank the Fundacion Antorchas (Grant 4248-70).
´
F.M.C., C.L., G.P. and M.L.D. thank CONICET for graduate and
postdoctoral research fellowships. A.H.T., C.L., F.M.C. and M.L.D.
thank the Deutscher Akademischer Austauschdienst (DAAD) for
research fellowships. A.H.T., C.L. and A.L.C. are research members of
CONICET.
16. Oliveros, E., P. Murasecco-Suardi, A. M. Braun and H.-J. Hansen
(1992) Efficiency of singlet oxygen quenching by carotenoids
measured by near-infrared steady-state luminescence. In Methods
in Enzymology, Carotenoids, Vol. 213 (Edited by A. L. Packer), pp.
420–429. Academic Press, San Diego, CA.
17. Tanielian, C., L. Golder and C. Wolff (1984) Production and
quenching of singlet oxygen by the sensitizer in dye-sensitized
photo-oxygenations. J. Photochem. 25(2-4), 117–125.
18. Scurlock, R. D., S. Nonell, S. E. Braslavsky and P. R. Ogilby
(1995) Effect of solvent on the radiative decay of singlet molecular
oxygen (a1Dg). J. Phys. Chem. 99, 3521–3526.
19. Wilkinson, F., H. P. Helman and A. B. Ross (1995) Rate con-
stants for the decay and reactions of the lowest electronically
singlet state of molecular oxygen in solution. An expanded and
revised compilation. J. Chem. Phys. Ref. Data 24, 663–677.
20. Martinez, L. A., C. G. Martinez, B. B. Klopotek, J. Lang, A.
Neuner, A. M. Braun and E. Oliveros (2000) Non radiative and
radiative deactivation of singlet molecular oxygen in micellar
media and microemulsions. J. Photochem. Photobiol. B, Biol. 58,
94–107.
21. Croux, S., M.-T. Maurette, M. Hocquaux, A. Ananides, A. M.
Braun and E. Oliveros (1990) Kinetic parameters of the reactivity
of dihydroxy naphthalenes with singlet oxygen. New J. Chem. 14,
161–167.
SUPPLEMENTAL MATERIALS
Additional figures are available for this article:
Evolution of the absorption spectra as a function of
irradiation time.
Sensitizer: rose bengal (irradiation wavelength: 547 nm),
pD = 10.5.
This material is available as part of the online article from:
2006-09-15-RA-1041
Please note: Blackwell Publishing are not responsible for the
content or functionality of any supplementary materials
supplied by the authors. Any queries (other than missing
material) should be directed to the corresponding author for
the article.
REFERENCES
1. DeRosa, M. C. and R. J. Crutchley (2002) Photosensitized singlet
oxygen and its applications. Coor. Chem. Rev. 233–234, 351–371.
2. Braun, A. M., M. T. Maurette and E. Oliveros (1991) Photo-
chemical Technology, Chapter 11 (Translated by D. Ollis and
N. Serpone), pp. 445–499. Wiley, Chichester.
3. Tarr, M. and D. P. Valenzeno (2003) Singlet oxygen: The rele-
vance of extracellular production mechanisms to oxidative stress
in vivo. Photochem. Photobiol. Sci. 2, 355–361.
22. Murasecco-Suardi, P., E. Gassmann, A. M. Braun and E. Oliveros
(1987) Solvent deuterium isotope effects on acid–base equilibria.
Helv. Chim. Acta 70, 1760–1773.
23. Neckers, D. C. (1989) Rose bengal. J. Photochem. Photobiol. A,
Chem. 47, 1–29.
24. Braun, A. M., M. T. Maurette and E. Oliveros (1991) Photo-
chemical Technology, Chapter 2 (Translated by D. Ollis and N.
Serpone), pp. 85–88. Wiley, Chichester.
4. Schweitzer, C. and R. Schmidt (2003) Physical mechanisms of
generation and deactivation of singlet oxygen. Chem. Rev. 103,
1685–1757.
25. Darmanyan, A. P., W. S. Jenks and P. Jardon (1998) Charge-
transfer quenching of singlet oxygen (O2(1Dg)) by amines and
aromatic hydrocarbons. J. Phys. Chem. A 102, 7420–7426 [Erra-
tum: p. 9308].
5. Thomas, A. H., C. Lorente, A. L. Capparelli, C. G. Martınez, A.
´
M. Braun and E. Oliveros (2003) Singlet oxygen (1Dg) production
by pterin derivatives in aqueous solutions. Photochem. Photobiol
Sci. 2, 245–250.
26. Monroe, B. M. (1977) Quenching of singlet oxygen by aliphatic
amines. J. Phys. Chem. 81, 1861–1864.
6. Cabrerizo, F. M., A. H. Thomas, C. Lorente, M. L. Dantola, G.
´
Petroselli, R. Erra-Balsells and A. L. Capparelli (2004) Generation
of reactive oxygen species during the photolysis of 6-hydroxy-