FULL PAPER
7.2 mmol) and dmmNOH (3.50 g, 21.7 mmol) were prepared in
tetrahydrofuran (10 mL, each). After cooling the zinc compound
to 0 °C, the ligand was added dropwise, whereby a clear yellow
solution was formed. During warming to room temperature pre-
cipitation occurred. The product was filtered and washed twice
with methyl-tert-butyl ether (10 mL). After drying in high vacuum
over several hours, a yellowish powder (1.84 g, 82.3%) was ob-
tained. The product was stable under ambient conditions. Ceramic
yield (CY)/elemental analysis (CHN): Found CY 26.50%, C 29.52,
N 6.60, H 2.98. calcd. for Zn4O(C5H6NO5)6 CY: 26.29%, C 29.10,
N 6.79, H 2.92. 1H NMR (500 MHz, [D6]dimethyl sulfoxide,
25 °C): δ = 3.69, 3.72 (ϪCH3) ppm. 13C{1H} NMR (500 MHz,
[1] R. M. Pasquarelli, D. S. Ginley, R. O’Hayre, Chem. Soc. Rev.
2011, 40, 5406–5441.
[2] M. A. M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Ansel-
mann, Phys. Status Solidi A 2009, 206, 588–597.
[3] R. Parashkov, E. Becker, T. Riedl, H. Johannes, W. Kowalsky,
Proc. IEEE 2005, 93, 1321–1329.
[4] A. C. Jones, M. L. Hitchman, Chemical Vapor Deposition: Pre-
cursors, Processes and Applications, RSC Publishing, Cam-
bridge, 2008.
[5] L. G. Bloor, C. J. Carmlat, D. Pugh, Coord. Chem. Rev. 2011,
255, 12931–1318.
[6] R. C. Hoffmann, J. Dilfer, A. Issanin, J. J. Schneider, Phys.
Status Solidi A 2011, 208, 1708–1713.
[7] Y. Aksu, M. Driess, A. Merkulov, D. V. Pham, S. Schutte, J.
Steiger, Patent No. DE102008058040-A1; WO2010057770-A2.
[8] M. Tsaroucha, Y. Aksu, E. Irran, M. Driess, Chem. Mater.
2011, 23, 2428–2438.
[9] Y. Zhao, G. Dong, L. Duan, J. Qiao, D. Zhang, L. Wang, Y.
Qiu, RSC Adv. 2012, 2, 5307–5313.
[10] A. V. Kelin, A. Maioli, Curr. Org. Chem. 2003, 7, 1855–1886.
[11] C. Pettinari, F. Marchetti, A. Drozdov, in: Comprehensive Co-
ordination Chemistry II (Eds.: J. A. McCleverty, T. J. Meyer),
Elsevier, Amsterdam, 2003, vol. 1, p. 97–111.
[D6]dimethyl sulfoxide, 25 °C):
δ = 51.62 (ϪCH3); 143.36
(ϪC=NO); 162.70, 164.69 (ϪCOO) ppm.
Zinc Oxide Film Preparation: Quartz slides (2ϫ2 cm) were cleaned
by ultrasonication in 2-propanol and distilled water. Substrates
(1.5ϫ1.5 cm) for FET devices (interdigital structure obtained from
Fraunhofer IWS-Dresden) consisted of n-doped silicon with a
90 nm layer of SiO2, on which gold electrodes were deposited with
an intermediate adhesive layer of indium tin oxide (ITO). The
channel width of source/drain electrodes was W = 10 mm with a
channel length L = 10 μm.[6,37,41] FET substrates were cleaned by
consecutive ultrasonication in acetone, 2-propanol and deionised
water for 5 min and dried by purging with argon. The deposited
solutions contained 3 wt.-% of the precursor (1) or (2) in methoxy-
ethanol. Films were produced by spincoating (6 s at 1000 rpm fol-
lowed by 20 s at 2000 rpm) and heating on a hotplate in air for
4 min. Thicker films can be obtained by iteration of this coating
procedure.
[12] D. Bekermann, D. Pilard, R. Fischer, A. Devi, ECS Trans.
2009, 25, 601–608.
[13] R. W. Saalfrank, U. Reinmann, M. Göritz, F. Hampel, A.
Scheurer, F. W. Heinemann, M. Büschel, J. Daub, V. Schüne-
mann, A. X. Trautwein, Chem. Eur. J. 2002, 8, 3614–3619.
[14] W. Clegg, D. R. Harbrob, C. D. Homan, P. A. Hunt, I. A.
Little, B. P. Straughan, Inorg. Chim. Acta 1991, 186, 51–60.
[15] R. M. Gordon, H. B. Silver, Can. J. Chem. 1983, 61, 1218–
1221.
Materials Characterisation: TG/IR/MS measurements: TG 209N1
(Netzsch) coupled with a Nicolet iS10 spectrometer (Thermo-
Scientfic) and Aelos QMS 403C (Netzsch). IR: Nicolet 6700 (Ther-
moScientifc). Samples were measured as liquids or powders with
an attenuated total reflection (ATR) unit. XRD: STOE Stadi-P,
Cu-Kα radiation. PL spectra: Fluorolog-3 (Horiba) with Xenon
lamp. AFM: CP-II (Bruker-Veeco), 0.5 Hz, silicon cantilevers.
SEM: JSM-7600F (Jeol). TEM: CM20 (Philips, FEI) operated at
200 kV. Samples were supported on a lacey-carbon copper grid
(300 mesh).
[16] B. Luo, B. E. Kucera, W. L. Gladfelter, Polyhedron 2010, 29,
2795–2801.
[17] A. Chedin, J. Teffo, J. Mol. Spectrosc. 1984, 107, 333–342.
[18] G. E. Ewing, J. Chem. Phys. 1962, 37, 2250–2256.
[19] J. Laane, J. R. Ohlsen, in: Progress in Inorganic Chemistry (Ed.:
S. J. Lippard), John Wiley & Sons, 1980, vol. 27, p. 465–509.
[20] R. E. Nightingale, A. R. Downie, D. L. Rotenberg, B. Craw-
ford, R. A. Ogg, J. Phys. Chem. 1954, 58, 1048–1050.
[21] A. J. L. Pombeiro, V. Y. Kukushkinin, Comprehensive Coordi-
nation Chemistry II (Eds.: J. A. McCleverty, T. J. Meyer), Elsev-
ier, Amsterdam, 2003, vol. 1, p. 631–637.
[22] M. A. Dahl, M. Manpadi, L. J. Williams, Angew. Chem. Int.
Ed. 2013, 52, 2–33.
FET characteristics were determined with an HP 4155A Semicon-
ductor Parameter Analyzer (Agilent) in a glove box in the dark
under an argon atmosphere. FET devices were stored in darkness
for about 24 h prior to measurement. Charge carrier mobility μSAT
and the threshold voltage Vth were derived from a linear fitting of
[23] H. P. Fischer, C. A. Grob, E. Renk, Helv. Chim. Acta 1962, 45,
2539–2553.
[24] G. W. Adams, J. H. Bowie, R. N. Hayes, J. Chem. Soc., Perkin
Trans. 2 1991, 1809–1818.
[25] A. F. Ferris, J. Org. Chem. 1960, 25, 12–18.
[26] L. M. Fell, P. J. A. Ruttink, P. C. Burgers, M. A. Trikoupis,
J. K. Terlouw, Int. J. Mass Spectrom. 2000, 195–6, 85–99.
[27] R. Pothiraja, A. Milanov, H. Parala, M. Winter, R. A. Fischer,
A. Devi, Dalton Trans. 2009, 654–663.
the square root of the source drain current (IDS0.5) as a function of
[6,37,41]
gate source voltage VGS
.
Supporting Information (see footnote on the first page of this arti-
cle): IR spectra of zinc oxide precursors, gas phase IR spectra as
well as mass spectra from TG coupling, additional TEM images
and photoluminescence spectra of zinc oxide films.
[28] S. Tobita, K. Ogino, S. Ino, S. Tajima, Int. J. Mass Spectrom.
1988, 85, 31–42.
[29] S. Tobita, S. Tajima, Int. J. Mass Spectrom. 1991, 105, 101–
118.
[30] B. A. Kang, K. S. Hwang, J. H. Jeong, J. Sol-Gel Sci. Technol.
2007, 43, 145–149.
Acknowledgments
[31] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger,
G. Somorjai, P. Yang, Nano Lett. 2005, 5, 1231–1236.
[32] S. Xu, Y. Wei, J. Liu, R. Yang, Z. L. Wang, Nano Lett. 2008,
8, 4027–4032.
[33] P. Lipowsky, S. Jia, R. C. Hoffmann, N. Y. Jin-Phillipp, J. Bill,
M. Rühle, Int. J. Mater. Res. 2006, 97, 607–613.
[34] D. Behera, B. S. Acharya, J. Lumin. 2008, 128, 1577–1586.
[35] A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A.
Meijerink, J. Lumin. 2000, 87–89, 454–456.
This work has been supported by the Deutsche Forschungsgemein-
schaft (DFG) through the DFG SPP 1596 program and by the
Merck Lab (a cooperative Research Lab Alliance between Merck
KGaA and TU Darmstadt). The authors thank M. Kaloumenos
(FET, MerckLab, Darmstadt), Dr. P. Atanasova (PL, University of
Stuttgart, Germany) and Dr. J. Broetz (GI-XRD, TU Darmstadt,
Germany) as well as T. Heinlein (TEM, TU Darmstadt, Germany)
for measurements.
Eur. J. Inorg. Chem. 2014, 2241–2247
2246
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim