Macromolecules
Article
(24) Snedden, P.; Cooper, A. I.; Scott, K.; Winterton, N.
Macromolecules 2003, 36, 4549.
(25) Ohno, H.; Yoshizawa, M.; Ogihara, W. Electrochim. Acta 2004,
(62) Coelho, R. J. Non-Cryst. Solids 1991, 131, 1136.
(63) Coelho, R. Physics of Dielectrics for the Engineer; Elsevier: New
York, 1979.
(64) Tudryn, G. J.; Liu, W. J.; Wang, S. W.; Colby, R. H.
Macromolecules 2011, 44, 3572.
(65) Wang, S. W.; Liu, W. J.; Colby, R. H. Chem. Mater. 2011, 23,
50, 255.
(26) Washiro, S.; Yoshizawa, M.; Nakajima, H.; Ohno, H. Polymer
2004, 45, 1577.
(27) Nakajima, H.; Ohno, H. Polymer 2005, 46, 11499.
(28) Ogihara, W.; Suzuki, N.; Nakamura, N.; Ohno, H. Polym. J.
2006, 38, 117.
(29) Ogihara, W.; Washiro, S.; Nakajima, H.; Ohno, H. Electrochim.
Acta 2006, 51, 2614.
(30) Ohno, H. Macromol. Symp. 2007, 249, 551.
(31) Green, O.; Grubjesic, S.; Lee, S.; Firestone, M. A. Polym. Rev.
2009, 49, 339.
1862.
(66) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.;
Watanabe, M. J. Phys. Chem. B 2005, 109, 6103.
(67) Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.
(68) Hill, N. E.; Vaughan, W. E.; Price, A. H.; Davies, M. Dielectric
Properties and Molecular Behaviour; Van Nostrand Reinhold Co.:
London, 1969.
(69) Frohlich, H. Theory of Dielectrics: Dielectric Constant and
̈
Dielectric Loss; Clarendon Press: London, 1949.
(70) Kirkwood, J. G. J. Chem. Phys. 1939, 7, 911.
(71) Oster, G.; Kirkwood, J. G. J. Chem. Phys. 1943, 11, 175.
(72) Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R. Phys. Chem.
Chem. Phys. 2009, 11, 2452.
(32) Xie, M.; Han, H.; Ding, L.; Shi, J. Polym. Rev. 2009, 49, 315.
(33) Chen, H.; Choi, J. H.; Salas-de La Cruz, D.; Winey, K. I.; Elabd,
Y. A. Macromolecules 2009, 42, 4809.
(34) Lee, M.; Choi, U. H.; Colby, R. H.; Gibson, H. W. Chem. Mater.
2010, 22, 5814.
(35) Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192.
(36) Wang, Y.; Voth, G. A. J. Phys. Chem. B 2006, 110, 18601.
(37) Jiang, W.; Wang, Y.; Yan, T.; Voth, G. A. J. Phys. Chem. C 2008,
112, 1132.
(73) Wubbenhorst, M.; van Turnhout, J. J. Non-Cryst. Solids 2002,
̈
305, 40.
(74) Boersma, A.; van Turnhout, J.; Wubbenhorst, M. Macromolecules
̈
1998, 31, 7453.
(75) Diaz-Calleja, R. Macromolecules 2000, 33, 8924.
(38) Lopes, J. N. A. C.; Padua, A. A. H. J. Phys. Chem. B 2006, 110,
(76) The actual EP is often slightly broader than Debye, and in the
past we have fit EP to an asymmetric broader function49 and to a
symmetric Cole−Cole function.65 These yield results for EP that are
qualitatively identical and nearly quantitatively identical to those from
Debye fitting, which is far simpler. When the asymmetric function is
3330.
(39) Margulis, C. J. Mol. Phys. 2004, 102, 829.
(40) Delsignore, M.; Maaser, H. E.; Petrucci, S. J. Phys. Chem. 1984,
88, 2405.
(41) Sun, X. G.; Kerr, J. B.; Reeder, C. L.; Liu, G.; Han, Y.
Macromolecules 2004, 37, 5133.
(42) Bottcher, C. J. F. Theory of Electric Polarization; Elsevier:
Amsterdam, 1973; Vol. 1.
(43) Kremer, F.; Schonhals, A. Broadband Dielectric Spectroscopy;
−
used with slopes of 1.91 for Tf2N− ionomers and 1.88 for PF6
ionomers on the high frequency side of EP, the conducting ion
−
content p is increased 2.1-fold (Tf2N−) and 1.7-fold (PF6 ) at all
temperatures where tan δ shows a maximum for EP and the activation
energy Ea was identical.
(77) Daguenet, C.; Dyson, P. J.; Krossing, I.; Oleinikova, A.; Slattery,
Springer-Verlag: New York, 2002.
(44) Macdonald, J. R. Phys. Rev. 1953, 92, 4.
(45) Coelho, R. Rev. Phys. Appl. 1983, 18, 137.
(46) Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy Theory,
Experiment and Applications; Wiley: New York, 2005.
(47) Klein, R. J.; Zhang, S.; Dou, S.; Jones, B. H.; Colby, R. H.; Runt,
J. J. Chem. Phys. 2006, 124, 144903.
J.; Wakai, C.; Weingaertner, H. J. Phys. Chem. B 2006, 110, 12682.
̈
(78) Nakamura, K.; Shikata, T. ChemPhysChem 2010, 11, 285.
(79) Angell, C. A. Chem. Rev. 1990, 90, 523.
(80) Yamane, M.; Hirose, Y.; Adachi, K. Macromolecules 2005, 38,
10686.
(81) Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.
(82) Rodenburg, B. V.; Sidebottom, D. L. J. Chem. Phys. 2006, 125,
024502.
(83) Floudas, G.; Stepanek, P. Macromolecules 1998, 31, 6951.
(84) Stukalin, E. B.; Douglas, J. F.; Freed, K. F. J. Chem. Phys. 2009,
131, 114905.
(85) Namikawa, H. J. Non-Cryst. Solids 1974, 14, 88.
(86) Namikawa, H. J. Non-Cryst. Solids 1975, 18, 173.
(87) Dyre, J. C. Phys. Rev. B 1993, 48, 12511.
(48) Fragiadakis, D.; Dou, S.; Colby, R. H.; Runt, J. Macromolecules
2008, 41, 5723.
(49) Fragiadakis, D.; Dou, S.; Colby, R. H.; Runt, J. J. Chem. Phys.
2009, 130, 064907.
(50) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(51) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(52) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J.
Phys. Chem. 1994, 98, 11623.
(53) Heiney, P. A. Comm. Powder Diffr. Newsl. 2005, 32, 9.
(54) Beilstein test: A copper wire was heated in a burner flame until
there was no further coloration of the flame. The wire was allowed to
cool slightly, then dipped into the monomer, and again heated in the
flame. A green flash is indicative of halide ions, whereas pure Tf2N−
−
and PF6 salts give orange or red colors.
(55) van Krevelen, D. W. Properties of Polymers; Elsevier: New York,
1990.
(56) Annapureddy, H. V. R.; Kashyap, H. K.; De Biase, P. M.;
Margulis, C. J. J. Phys. Chem. B 2010, 114, 16838.
(57) Salas-de la Cruz, D.; Green, M. D.; Ye, Y. S.; Elabd, Y. A.; Long,
T. E.; Winey, K. I. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 338.
(58) Wang, W.; Liu, W. J.; Tudryn, G. J.; Colby, R. H.; Winey, K. I.
Macromolecules 2010, 43, 4223.
(59) Wang, W.; Tudryn, G. J.; Colby, R. H.; Winey, K. I. J. Am. Chem.
Soc. 2011, 133, 10826.
(60) Russina, O.; Triolo, A.; Gontrani, L.; Caminiti, R.; Xiao, D.;
Hines, L. G.; Bartsch, R. A.; Quitevis, E. L.; Pleckhova, N.; Seddon, K.
R. J. Phys.: Condens. Matter 2009, 21, 424121.
(61) Bhargava, B. L.; Devane, R.; Klein, M. L.; Balasubramanian, S.
Soft Matter 2007, 3, 1395.
3985
dx.doi.org/10.1021/ma202784e | Macromolecules 2012, 45, 3974−3985