Organic Process Research & Development 1998, 2, 214−220
Process Development of 5-Methoxy-1H-indole-2-carboxylic Acid from Ethyl
2-Methylmalonate
Yves Bessard†
Department of Process Research, LONZA Ltd., P.O. Box CH-3930 Visp, Switzerland
Scheme 1. Atevirdine mesylate (U-87201E, 1) and its
precursor (10)
Abstract:
Development is described of a new process for the preparation
from malonates of 5-methoxy-1H-indole-2-carboxylic acid es-
ters, useful intermediates in the synthesis of pharmaceutical
compounds. The process uses readily available starting materi-
als, produces little waste, can be operated safely on at least 1
molar scale, and gives high yields. The main areas of optimiza-
tion included the azo coupling of a diazonium salt with malonate
derivatives, the Japp-Klingemann rearrangement, and the
Fischer indole synthesis.
Strategy Leading to the Indole Ring. The choice of
synthetic pathway is very dependent on the complexity of
the indole target and on the availability of the starting
material. For the preparation of 5-methoxy-1H-indole-2-
carboxylic acid (10), the Fischer synthesis,4 which is certainly
the most widely used method, appears to be the most adapted
for our purpose. Two classical pathways can be envi-
sioned: reaction of a diazonium salt with a â-ketoester and
cyclization of the resulting hydrazonopyruvate [Pathway
(a)5-9] and condensation of a hydrazine with a pyruvate and
cyclization of the resulting hydrazonopyruvate [Pathway
(b)10-12] (Scheme 2). For economical reasons (availability
and costs of the hydrazine) it was decided to follow the
diazonium Pathway (a).
Introduction
5-Methoxy-1H-indole-2-carboxylic acid (10) has been
shown to be a useful intermediate for the preparation of
pharmaceutical products.1 Moreover, 10 has been employed
for the preparation of antiviral agents such as U-87201E2
(1, atevirdine mesylate; (Scheme 1), a non-nucleoside,
reverse transcriptase inhibitor of HIV. The increased chemi-
cal and medicinal applications of 10 and its derivatives have
led to renewed interest in the synthesis and chemistry of this
versatile heterocycle. As part of our program of development
of synthetic methods for the construction of heterocycles,
we report here a safe, economical, and reliable synthesis of
5-methoxy-1H-indole-2-carboxylic acid (10) from readily
available starting materials.3
The reaction of a diazonium salt with a â-ketoester is well
documented in the literature. Specifically, the 5-methoxy-
1H-indole-2-carboxylic acid (10) has been prepared from the
ethyl ester of 2-methylacetoacetic acid (13) and the di-
azonium salt 3 of p-anisidine (2; Scheme 3, process A). In
the most detailed procedure, published by T. Kralt,6 the
5-methoxy-1H-indole-2-carboxylic acid (10) was obtained
in a 58% overall yield from p-anisidine. We were able to
improve their procedure, and 10 was obtained in 75-80%
overall yield from p-anisidine. Nevertheless, this process
† Phone: (41) 27 948 5800. Fax: (41) 27 948 6180. E-mail:
(1) (a) Le´on, P.; Garbay-Jaureguiberry, C.; Barsi, M. C.; Le Pecq, J. B.; Roques,
B. P. J. Med. Chem. 1987, 30, 2074. (b) Caubere, P.; Jamart-Gregoire, B.;
Caubere, C.; Bizot-Espiard, J. G.; Renard, P.; Adam, G. Eur. Pat. Appl. EP
624,575 (Chem. Abstr. 1995, 122, 81177f). (c) Morales-Rios, M. S.; Joseph-
Nathan, P. ReV. Soc. Quim. Me´x. 1989, 33, 331.
(2) (a) Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pe`na, N.; May, P. D.;
Palmer, J. R.; Johnson, P. D.; Smith, H. W.; Busso, M.; Tan, C. K.;
Voorman, R. L.; Reusser, F.; Althaus, I. W.; Downey, K. M.; So, A. G.;
Resnick, L.; Tarpley, W. G.; Aristoff, P. A. J. Med. Chem. 1994, 37, 999.
(b) Livermore; D. G. H.; Bethell, R. C.; Cammack, N.; Hancock, A. P.;
Hann, M. M.; Green, D. V. S.; Lamont, R. B.; Noble, S. A.; Orr, D. C.;
Payne, J. J.; Ramsay, M. V. J.; Shingler, A. H.; Smith, C.; Storer, R.;
Williamson, C.; Willson, T. J. Med. Chem. 1993, 36, 3784. (c) Romero, D.
L.; Morge, R. A.; Genin, M. J.; Biles, C.; Busso, M.; Reusser, F.; Althaus,
I. W.; Resnick, L.; Tarpley, W. G.; Thomas, R. C. J. Med. Chem. 1993, 36,
1505. (d) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney,
C. S.; Balani, S. K.; Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee,
W. J.; Kauffman, L. R.; O’Brien, J. A.; Sardana, V. V.; Schleif, W. A.;
Theoharides, A. D.; Anderson, P. S. J. Med. Chem. 1993, 36, 1291. (e)
Romero, D. L.; Thomas, R. C.; May, P. D.; Poel, T. J. (Upjohn Company,
USA) PCT Int. Appl. WO 96 18,628 (Chem. Abstr. 1996, 125, 142777g).
(f) Perrault, W. R.; Shephard, K. P.; LaPean, L. A.; Krook, M. A.;
Dobrowolski, P. J.; Lyster, M. A.; McMillan, M. W.; Knoechel, D. J.;
Evenson, G. N.; Watt, W.; Pearlman, B. A. Org. Proc. Res. DeV. 1997, 1,
106. (g) See also additional information in: Drugs of the Future 1992, 17,
891; 1993, 18, 57; 1994, 19, 9; 1996, 21, 72; and in Scrip Magazine October
1993, 39.
(3) Bessard, Y.; Imwinkelried, R. (LONZA Ltd.) Swiss Patent No. 687,327
(Chem. Abstr. 1997, 126, 144112f).
(4) Robinson, B. The Fischer Indole Synthesis; John Wiley & Sons: New York,
1982.
(5) Hughes, G. K.; Lions, F. J. Pr. R. Soc. N. S. Wales 1938, 71, 475.
(6) Kralt, T.; Asma, W. J.; Haeck, H. H.; Moed, H. D. Rec. TraV. Chim. Pays-
Bas 1961, 80, 313.
(7) Heath-Brown, B.; Philpott, P. G. J. Chem. Soc. 1965, 7185.
(8) Monge Vega, A.; Fernandez Alvarez, E. An. Quim. 1972, 68, 1153.
(9) Murakami, Y.; Yokoyama, Y.; Miura, T.; Hirasawa, H.; Kamimura, Y.;
Izaki, M. Heterocycles 1984, 22, 1211.
(10) Amorosa, M. Gazz. Chim. Ital. 1955, 85, 1445.
(11) Salituro, F. G.; Harrison, B. L.; Baron, B. M.; Nyce, P. L.; Stewart, K. T.;
Kehne, J. H.; White, H. S.; McDonald, I. A. J. Med. Chem. 1992, 35, 1791.
(12) Morales-Rios, M. S.; Joseph-Nathan, P. ReV. Soc. Quim. Me´x. 1989, 33,
331.
214
•
Vol. 2, No. 4, 1998 / Organic Process Research & Development
S1083-6160(98)00006-1 CCC: $15.00 © 1998 American Chemical Society and Royal Society of Chemistry
Published on Web 04/30/1998