LETTER
Stereoselective Synthesis of New D-Homoestrone Derivatives
421
16), 111.6 (C-2), 113.4 (C-4), 126.2 (C-1), 132.4 (C-10),
137.7 (C-5) and 157.5 (C-3).
column chromatography also gave the corresponding
16 -fluoro-17a-ketone in small quantities (entries 9 and
13). The 1H NMR spectra of 15–22 reveal that the C-17a-
H signal has disappeared as compared to the spectra of the
corresponding 17a-hydroxy compounds, while the 17-H
double doublet (J = 10.0 Hz, J = 2.0 Hz) at around = 5.9
and the C-16 multiplet at around = 6.9 can be identified
in the spectra of the conjugated derivatives 23 and 24.
(8) Typical Procedure for the Synthesis of 16 -Chloro-D-
homoestra-1,3,5(10)-triene-3,17a-diol-3-methyl Ether
Isomers (7a and 7b): 298 mg (1.00 mmol) of 1 was
dissolved in 5 mL of ice-cold CH2Cl2 and 0.13 mL (278 mg,
1.1 mmol) of anhydrous SnCl4 in 2 mL of CH2Cl2 was added
dropwise during stirring of the mixture under an argon
atmosphere for 2 h. The solution was then diluted with water
(10 mL) and extracted with CH2Cl2 (3 10 mL), and the
combined organic phases were dried over Na2SO4.
In conclusion, this is a simple and efficient synthesis of
halogenated D-homoestrone derivatives involving the use
of different Lewis acids and intramolecular cationic cy-
clization. In addition to its simplicity and the mild reaction
conditions, the method provides products with high selec-
tivity, which makes it a very useful process for the substi-
tution of various halogens onto the sterane skeleton.
Evaporation in vacuo and purification by column
chromatography (silica gel, CH2Cl2) afforded 244 mg (73%)
of 7a and 34 mg (10%) of 7b as white solids. 7a: mp 90–92
°C; Rf 0.27 (EtOAc–CH2Cl2 = 2: 98); 1H NMR (400 MHz,
CDCl3): = 0.88 (s, 3 H, 18-H3), 2.85 (m, 2 H, 6-H2), 3.28
(m, 1 H, 17a -H), 3.78 (s, 3 H, 3-OMe), 3.90 (m, 1 H, 16 -
H), 6.63 (d, 1 H, J4-2 = 2.7 Hz, 4-H), 6.72 (dd, 1 H, J2-1 = 8.6
Hz, J2-4 = 2.7 Hz, 2-H) and 7.21 (d, 1 H, J1-2 = 8.6 Hz, 1-H).
13C NMR (100 MHz, CDCl3): = 10.9 (C-18), 25.9, 26.6,
30.0, 34.5, 36.8, 37.5 (C-13), 38.3 (C-8), 40.5, 43.5 (C-9),
47.0 (C-14), 55.2 (3-OMe), 56.3 (C-16), 77.9 (C-17a), 111.7
(C-2), 113.4 (C-4), 126.3 (C-1), 132.4 (C-10), 137.7 (C-5)
and 157.6 (C-3), EI MS m/z (relative intensity): 336(37), 334
(M+, 100), 173(13) and 147(7). 7b: mp 92–94 ºC; Rf 0.31
Acknowledgement
We thank the Hungarian Scientific Research Fund (OTKA
T032265) and the Hungarian Ministry of Education (FKFP 0110/
2000) for financial support of this work.
(EtOAc–CH2Cl2 = 2: 98); 1H NMR (500 MHz, CDCl3):
0.91 (s, 3 H, 18-H3), 2.84 (m, 2 H, 6-H2), 3.54 (bs, 1 H, 17a -
H), 3.78 (s, 3 H, 3-OMe), 4.29 (m, 1 H, 16 -H), 6.63 (d, 1 H,
=
References
(1) (a) Andersen, N. H.; Hadley, S. W.; Kelly, J. D.; Bacon, E.
R. J. Org. Chem. 1985, 50, 4144. (b) Ladouceur, G.;
Paquette, L. A. Synthesis 1992, 185. (c) Masse, C. E.;
Dakin, L. A.; Knight, B. S.; Panek, J. S. J. Org. Chem. 1997,
62, 9335. (d) Barbero, A.; Garcia, C.; Pulido, F. J.
Tetrahedron 2000, 56, 2739.
(2) (a) Cheney, D. L.; Paquette, L. A. J. Org. Chem. 1989, 54,
3334. (b) Deguin, B.; Florent, J.-C.; Monneret, C. J. Org.
Chem. 1991, 56, 405. (c) McIntosh, M. C.; Weinreb, S. M.
J. Org. Chem. 1991, 56, 5010. (d) Peron, G. L. N.;
Kitteringham, J.; Kilburn, J. D. Tetrahedron Lett. 1999, 40,
3045.
(3) (a) Schäfer, H.-J.; Baringhaus, K.-H. Liebigs Ann. Chem.
1990, 355. (b) Molander, G. A.; Cameron, K. O. J. Am.
Chem. Soc. 1993, 115, 830. (c) Harmata, M.; Barnes, C. L.
J. Am. Chem. Soc. 1990, 112, 5655.
(4) (a) Balog, A.; Geib, S. J.; Curran, D. P. J. Org. Chem. 1995,
60, 345. (b) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S.
Synthesis 1990, 646. (c) Snider, B. B. In: Comprehensive
Organic Synthesis, Vol. 2; Trost, B. M.; Fleming, I., Eds.;
Heathcock C. H., Pergamon Press: Oxford, 1991, Part 2,
527.
J
4-2 = 2.7 Hz, 4-H), 6.72 (dd, 1 H, J2-1 = 8.6 Hz, J2-4 = 2.7 Hz,
2-H) and 7.21 (d, 1 H, J1-2 = 8.6 Hz, 1-H). 13C NMR (75
MHz, CDCl3): = 17.2 (C-18), 26.1, 26.2, 30.0, 34.1, 35.1,
37.4 (C-13), 39.0 (C-8), 39.5, 41.7 and 43.1 (C-9 and C-14),
55.2 (3-OMe), 56.6 (C-16), 76.5 (C-17a), 111.7 (C-2), 113.4
(C-4), 126.2 (C-1), 132.5 (C-10), 137.8 (C-5) and 157.5 (C-
3), EI MS m/z (relative intensity): 336(27), 334 (M+, 100),
173(10) and 147(5). C20H27ClO2. The compounds give
correct elemental analyses.
(9) Typical Procedure for the Synthesis of 16 -Bromo-D-
homoestra-1,3,5(10)-triene-3,17a-diol-3-benzyl Ether
Isomers (13a and 13b): A mixture of 375 mg (1 mmol) of
secoestrone-3-benzyl ether 2 and 478 mg (1.00 mmol) of
anhydrous ZnBr2 in 5 mL of CH2Cl2 was heated for 2 h and
then stirred overnight at r.t. The suspension was diluted with
water (10 mL) and neutralized with NaHCO3, the aqueous
phase was extracted with CH2CH2 (3 10 mL) and the
combined organic phases were washed with brine and dried
over Na2SO4. After evaporation in vacuo, the crude product
was purified by column chromatography (silica gel, CH2Cl2)
to give 355 mg (78%) of 13a as a white solid and 31 mg (7%)
of 13b as a yellow oil. 13a: mp 103–105 °C; Rf 0.24
(CH2Cl2); 1H NMR (500 MHz, CDCl3): = 0.90 (s, 3 H, 18-
H3), 2.84 (m, 2 H, 6-H2), 3.27 (m, 1 H, 17a -H), 4.00 (m, 1
(5) (a) Noltemeyer, M.; Tietze, L. F.; Wölfling, J.; Frank, ;
Schneider, G. Acta Cryst. Sect. C 1996, 2258. (b) Wölfling,
J.; Frank, ; Schneider, G.; Tietze, L. F. Synlett 1998, 1205.
(c) Wölfling, J.; Frank, ; Schneider, G.; Tietze, L. F. Eur. J.
Org. Chem. 1999, 3013.
H, 16 -H), 5.02 (s, 2 H, 3-benzyl-CH2), 6.71 (d, 1 H, J4-2
=
2.6 Hz, 4-H), 6.79 (dd, 1 H, J2-1 = 8.6 Hz, J2-4 = 2.6 Hz, 2-H),
7.19 (d, 1 H, J1-2 = 8.6 Hz, 1-H), 7.32 (m, 1 H, 4’-H), 7.38
(m, 2 H, 3’-H and 5’-H) and 7.43 (m, 2 H, 2’-H and 6’-H).
13C NMR (125 MHz, CDCl3): = 10.9 (C-18), 25.9, 26.5,
29.9, 35.4, 36.8, 38.2 (C-16), 38.3 (C-13), 41.5, 43.5 and
47.4 (C-8 and C-9), 48.1 (C-14), 69.9 (3-benzyl-CH2), 78.4
(C-17a), 112.5 (C-2), 114.5 (C-4), 126.2 (C-1), 127.4 (2C,
C-2’ and C-6’), 127.8 (C-4’), 128.5 (2C, C-3’ and C-5’),
132.6 (C-10), 137.2 (C-1’), 137.6 (C-5) and 156.8 (C-3).
(6) Schneider, G.; Bottka, S.; Hackler, L.; Wölfling, J.; Sohár, P.
Liebigs Ann. Chem. 1989, 263.
(7) Spectroscopic Data of 16 -Fluoro-D-homoestra-
1,3,5(10)-triene-3,17a -diol-3-methyl ether(6a): 1H NMR
(400 MHz, CDCl3): = 0.88 (s, 3 H, 18-H3), 2.84 (m, 2 H,
6-H2), 3.27 (m, 1 H, 17a -H), 3.78 (s, 3 H, 3-OMe), 4.54
(dm, 1 H, J = 48.5 Hz, 16 -H), 6.63 (d, 1 H, J4-2 = 2.7 Hz, 4-
H), 6.72 (dd, 1 H, J2-1 = 8.6 Hz, J2-4 = 2.7 Hz, 2-H) and 7.21
(d, 1 H, J1-2 = 8.6 Hz, 1-H). 13C NMR (100 MHz, CDCl3):
= 10.9 (C-18), 25.9 (C-11), 26.6 (C-7), 30.0 (C-6), 30.1 (J =
17.9 Hz, C-15), 34.9 (J = 21.0 Hz, C-17), 36.7 (C-12), 38.8
(C-13), 41.7 (C-8), 43.8 (C-9), 43.9 (J = 10.6 Hz, C-14), 55.2
(3-OMe), 74.6 (J = 11.0 Hz, C-17a), 90.0 (J = 164.1 Hz, C-
13b: Rf 0.37 (CH2Cl2); 1H NMR (500 MHz, CDCl3):
=
0.88 (s, 3 H, 18-H3), 2.83 (m, 2 H, 6-H2), 3.47 (bs, 1 H, 17a -
H), 4.42 (m, 1 H, 16 -H), 5.02 (s, 2 H, 3-benzyl-CH2), 6.71
(d, 1 H, J4-2 = 2.7 Hz, 4-H), 6.78 (dd, 1 H, J2-1 = 8.7 Hz, J2-4
= 2.7 Hz, 2-H), 7.19 (d, 1 H, J1-2 = 8.7 Hz, 1-H), 7.31 (m, 1
Synlett 2002, No. 3, 419–422 ISSN 0936-5214 © Thieme Stuttgart · New York