Irradiation of a solution of the bis(cinnamoyl)ketenedithio-
acetal 2a in benzene (2.5 3 1023 M) with Pyrex filtered light for
one hour gave bicyclo[3,2,0]heptane-2,4-dione 3a as a yellow
crystalline solid (mp. 170–173 °C) as the only product in 50%
isolated yield, while rest of the starting material could be
recovered unchanged (Scheme 1).
internal photochemical [2 + 2] cycloaddition. Studies on other
possible transformations induced by the conformational rigidity
of polarized ketenedithioacetals as well as the likely applica-
tions of the highly functionalized bicycloheptanediones 3 are in
progress.
Irradiation of a more dilute solution (2.75 3 1025 M) of 2a
has resulted in complete conversion into 3a in less than five min
(Fig. 2).
Notes and references
† Crystal data for 2a: Yellow prismatic crystal, C22H18O2S2, monoclinic
space group P21/c, a = 8.998(4), b = 16.579(6), c = 13.372(6) Å,
b = 106.50(5)°, V = 1913(1) Å3, Z = 4, Dc = 1.314 g cm23, m = (Cu-Ka)
2
= 2.63 cm21. The structure was solved by direct method and refined on ¡F¡
by full-matrix least-squares refinement using the program SHELX-97.7 The
final R and Rw were 0.051 and 0.139, respectively, using 3267 unique
reflections with I > 2s(I). GoF = 1.05. CCDC 169427.
Crystal data for 3a: Yellow needle like crystal, C22H18O2S2, or-
thorhombic space group Pna21, a
= 31.600(7), b = 5.630(1), c =
10.199(6) Å, V = 1814(1) Å3, Z = 4, Dc = 1.385 g cm23, m = (Cu-Ka)
= 2.76 cm21. The structure was solved by direct method and refined on
2
¡F¡ by full-matrix least-squares refinement using the program SHELX-97.7
The final R and Rw were 0.0479 and 0.1263, respectively, using 1501
unique reflections with I > 2s(I). GoF = 1.143. CCDC 169428. See http://
format.
Fig. 2 Electronic absorption spectra of 2a (2.75 3 1025 M) in methanol
before (a) and after irradiation for 5 minutes at > 300 nm (b).
1 (a) B. Konnig, B. Knieriem and De Meijere, A. Chem. Ber., 1993, 1643;
(b) M. Shirai, T. Orikata and M. Tanaka, J. Polym. Sci. Polym. Chem. Ed.,
1985, 23, 463; (c) Z. Saavion and D. L. Wernick, J. Org. Chem., 1993, 58,
2424; (d) V. Enkelman, G. Wegner, K. Novak and K. B. Wagener, J. Am.
Chem. Soc., 1993, 115, 10390.
2 (a) S. A. Fleming and S. C. Ward, Tetrahedron Lett., 1992, 33, 1013; (b)
S. Akabori, T. Kumagai, Y. Habata and S. Sato, J. Chem. Soc., Perkin
Trans. 1, 1989, 1497; (c) M. Kuzuya, N. Yokota, M. Tanaka and T.
Okuda, Chem. Lett., 1985, 1467; (d) J. A. Ors and R. Srinivasan, J. Chem.
Soc., Chem. Commun., 1978, 400; (e) J. Rennert, S. Soloway, I. Waltcher
and B. Leong, J. Am. Chem. Soc., 1972, 94, 7242.
3 (a) B. Konig, S. Leue, C. Horn, A. Cauden, J.-P. Desvergne and H.
Bouas-Laurent, Leibigs Ann., 1996, 1231; (b) H. Greiving, H. Hopf, P. G.
Jones, P. Bubenitschek, J.-P. Desvergne and H. B. Laurent, J. Chem. Soc.,
Chem. Commun., 1994, 1075.
4 M. G. Banwell, D. C. R. Hockless and J. M. Walter, Chem. Commun.,
1996, 1469.
The structure of the product 3a was determined on the basis
of spectral and analytical data.6 Finally the stereochemical
features were established by X-ray structural analysis (Fig. 3).†
Similarly, the other 1,7-disubstituted-4-(1,3-dithiolan-2-yli-
den)-1,6-heptadiene-3,5-diones 2b–g also gave the respective
bicyclo[3,2,0]heptane-2,4-diones 3b–g in 40–70% overall
yields (Scheme 1). The structures of the products 3b and 3c
were confirmed with the help of spectral and analytical data.
In conclusion, we have developed a very facile method for
exerting topochemical control over cycloaddition reactions of
the cinnamoyl groups by the incorporation of a ketenedithioace-
tal moiety. It was found that the push–pull nature of the
ketenedithioacetal functionality organizes the cinnamoyl
groups parallel and close to each other, thereby effecting a facile
5 (a) H. H. Tonnensen, J. Karlsen and A. Mostad, Acta Chem. Scand., 1982,
36, 475; (b) H. H. Tonnesen, J. Karlsen, A. Mostad, U. Pedersen, P. B.
Rasmussen and S. O. Lawesson, Acta Chem. Scand., 1983, 37, 179; (c) A.
Mostad, U. Pedersen, P. B. Rasmussen and S. O. Lawesson, Acta Chem.
Scand., 1983, 37, 901; (d) C. H. Gorbitz, A. Mostad, U. Pedersen, P. B.
Rasmussen and S. O. Lawesson, Acta Chem. Scand., 1986, 40, 420.
6 3-(1,3-Dithiolan-2-yliden)-6,7-diphenyl bicyclo[3,2,0]heptane-2,4-dione
3a. Obtained as a yellow crystalline solid by the irradiation of 400 mL of
2.5 3 1023 M solution of 2a for 1 h . Yield (20 mg, 50%), mp 170–173
°C. 1H NMR (300 MHz, CDCl3) d 3.5 (4H, s, SCH2), 3.6 (2H, d,
cyclobutane), 4.1 (2H, d, cyclobutane), 6.9–7.3 (10H, m, aromatic) ppm.
13C NMR (300 MHz, CDCl3) d 29.1, 37.7, 46.8, 47.2, 47.8, 48.6, 109.2,
127.8, 138.9, 200.9 ppm. IR nmax/cm21 1625, 1440, 1285, 1225. FAB
mass 379 (M+ + 1, 95%), 199 (90%), 165 (24%), 155 (50%), 149 (30%),
138 (58%), 57 (100%), Anal. Calcd. for C22H18O2S2 C, 69.81; H, 4.79;
Found C, 69.72; H, 4.86%.
Fig. 3 ORTEP drawing of 3-(1,3-dithiolan-2-yliden)-6,7-diphenylbicyclo-
[3.2.0]heptane-2,4-dione 3a.
7 G. M. Sheldrick, 1997. SHELX-97. University of Göttingen, Germany.
CHEM. COMMUN., 2002, 736–737
737