sensitizer afforded the endoperoxide 5 in 86% yield.
However, when the reaction was carried out at rt for
Scheme 1. Synthesis of the Diene 4
40 h, the reaction proceeded further and the endoperoxide
5 formed initially underwent a cascade photooxygenation
reaction to form two regioisomeric tricyclic bis-endoper-
oxides 6 (50%) and 7 (8%) beside the aromatization
1
1
product 8 (21%). The products were separated by col-
umn chromatography.
Scheme 2. Synthesis of the Bis-endoperoxides 6 and 7
branched carbasugars where we applied a tandem reaction
of singlet oxygen to 4,5-dimethylenecyclohex-1-ene (4).
The starting material, 4,5-dimethylenecyclohex-1-ene
(
tion of maleic anhydride to in situ generated butadiene
4), was synthesized in four steps starting with the addi-
6
(
the diol 2, whose OH groups were iodinated with I , in the
Scheme 1). Reduction of 1 with LiAlH in THF afforded
4
7
2
8
presence of imidazole and PPh to give 3. The diiodide 3
was subjected to an elimination reaction of 2 mol of HI
3
9
with KOH in methanol to afford the diene 4 in almost
1
The structures of 6 and 7 were assigned by H and
13
C
NMR spectra. The 300 MHz H NMR spectrum of 6 in
quantitative yield.
Our route to carbasugars was based on a photooxygena-
tion reaction of the diene 4 (Scheme 2). Photooxygena-
1
CDCl exhibits two doublet of doublets at δ 6.83 (J = 8.5
3
1
0
and 6.1 Hz) and δ 6.18 (J = 8.5 and 1.5 Hz). The main
coupling (8.5 Hz) is in agreement with the cis-configuration
of the double bond protons. Further splittings arise from
coupling with the bridgehead proton H-7. The methylene
protons next to the hydroperoxide group resonate as an
AB-system at δ 2.08 and δ 1.94 ppm. Both parts of this
system show further coupling with the bridge-head proton
H-7. The structure of the regioisomer 7 was established by
NMR data. Further confirmation was achieved by single
crystal X-ray analysis (Figure 1). The molecule 7 crystal-
tion of diene 4 in methylene chloride (500 W, projection
lamp, 25 min) at 0 °C using tetraphenylporphyrin as a
(3) For very recent publications on carbasugars, see: (a) Griffen, J. A.;
White, J. C.; Kociok-K o€ hn, G.;Lloyd, M. D.;Wells, A.;Arnot, T. C.;Lewis,
S. E. Tetrahedron 2013, 69, 5989–5997. (b) Tripathy, S.; Chattopadhyay, A.
Tetrahedron: Asymmetry 2012, 23, 1423–1429. (c) Palframan, M. J.; Kociok-
K o€ hn,G.;Lewis,S.E. Chem.;Eur. J. 2012, 18, 4766–4774. (d) Rej, R.; Jana,
N.; Kar, S.; Nanda, S. Tetrahedron: Asymmetry 2012, 23, 364–372. (e)
Mehta, G.; Mohanrao, R.; Katukojvala, S.; Landais, Y.; Sen, S.
Tetrahedron Lett. 2011, 52, 2893–2897. (f) Frau, I.; Di Bussolo, V.;
Favero, L.; Pineschi, M.; Crotti, P. Chirality 2011, 23, 820–826. (g)
Pilgrim, S.; Kociok-K o€ hn, G.; Lloyd, M. D.; Lewis, S. E. Chem.
Commun. 2011, 47, 4799–4801. (h) Shing, T. K. M.; Chen, Y.; Ng,
W. L. Synlett 2011, 1318–1320. (i) Frigell, J.; Cumpstey, I. Beilstein J.
Org. Chem. 2010, 6, 1127–1131. (j) Leermann, T.; Oliver, B.; Podeschwa,
M. A. L.; Pfueller, U.; Altenbach, H.-J. Org. Biomol. Chem. 2010, 8,
lized in the monoclinic space group P2 /n with Z = 4.
1
3
2
965–3974. (k) Shan, M.; O’Doherty, G. A. Org. Lett. 2010, 12, 2986–
989. (l) Salamci, E. Tetrahedron 2010, 66, 4010–4015. (m) Paquette,
L. A.; Moura-Letts, G.; Wang, G. P. J. Org. Chem. 2009, 74, 2099–2107.
4) Kishali, N. H.; Dogan, D.; Sahin, E.; Gunel, A.; Kara, Y.; Balci,
M. Tetrahedron 2011, 67, 1193–1200.
5) (a) Aydin, G.; Savran, T.; Akta -s , F.;Baran, A.;Balci, M. Org. Biomol.
(
(
Chem. 2013, 11, 1511–1524. (b) Baran, A.; Bekarlar, M.; Aydin, G.;
Nebioglu, M.; Sahin, E.; Balci, M. J. Org. Chem. 2012, 77, 1244–1250. (c)
Baran, A.; Gunel, A.; Balci, M. J. Org. Chem. 2007, 73, 4370–4375.
(6) (a) Goodridge, R. J.; Hambley, T. W.; Ridley, D. D. Aust. J.
Chem. 1986, 39, 591–604. (b) Hall, H. K., Jr.; Nogues, P.; Rhoades,
J. W.; Sentman, R. C.; Detar, M. J. Org. Chem. 1982, 47, 1451–1455.
(7) (a) Miyafuji, A.; Ito, K.; Katsuki, T. Heterocycles 2000, 52, 261–
272. (b) Henbest, H. B.; Jackson, W. R.; Robb, B. C. G. J. Chem. Soc. B
1966, 803–807. (c) Von Langen, D. J.; Tolman, R. L. Tetrahedron:
Asymmetry 1997, 8, 677–681.
8) For trans-diodide, see: (a) Anan, K.; Demizu, Y.; Oba, M.;
Kurihara, M.; Doi, M.; Suemune, H.; Tanaka, M. Helv. Chem. Acta
012, 95, 1694–1713. (b) Blakemore, D. C.; Bryans, J. S.; Carnell, P.;
Figure 1. ORTEP diagram of 7. Thermal ellipsoids are shown at
40% probability level.
(
2
Carr, C. L.; Chessum, N. E. A.; Field, M. J.; Kinsella, N.; Osborne, S. A.;
Warren, A. N.; Williams, S. C. Bioorg. Med. Chem. J. 2010, 20, 461–464.
For the formation of these bis-endoperoxides 6 and 7, we
suggest the following mechanism (Scheme 3). Dimethyl-
enecyclohexene 4 first undergoes a cycloaddition reaction
(
c) Tanaka, M.; Anan, K.; Demizu, Y.; Kurihara, M.; Doi, M.;
Suemune, H. J. Am. Chem. Soc. 2005, 127, 11570–11571.
9) For similar elimination reactions, see: (a) Payne, A. D.; Skelton,
B. W.; Wege, W.; Allan, H.; White, A. H. Eur. J. Org. Chem. 2007, 1184–
(
1195. (b) Bailey, W. J.; Rosenberg, J. J. Am. Chem. Soc. 1955, 77, 73–75.
(11) Roth, W. R.; Ebbrecht, T.; Beitat, A. Chem. Ber 1988, 121, 1357–
(10) Balci, M. Chem. Rev. 1981, 81, 91–108.
1358.
B
Org. Lett., Vol. XX, No. XX, XXXX