exothermic reaction of the corresponding peroxy radical with
8 B. Veyret, P. Roussel and R. Lesclaux, Int. J. Chem. Kinet., 1984,
6, 1599.
9
1
M. E. Jenkin, G. D. Hayman, T. J. Wallington, M. J. Hurley, J. C.
NO, decomposition of 1-ethoxyethoxy via an activated process
0
(
3 ) is clearly occurring, and accounts for about E30–50% of
the chemistry of the radicals generated in reaction (2). In
Ball, O. J. Nielsen and T. Ellermann, J. Phys. Chem., 1993, 97,
1
1712.
10 E. Henon, F. Bohr, N. Sokolowski-Gomez and F. Caralp, Phys.
Chem. Chem. Phys., 2003, 5, 5431.
addition, there are multiple sources of ethyl acetate in the
ꢀ
system: reactions of CH CH OCH(OO )CH radicals with
3
2
3
1
1 J. J. Orlando, G. S. Tyndall and T. J. Wallington, Chem. Rev.,
003, 103, 4657.
themselves or with other peroxy radicals; reaction (6) of the
-ethoxyethoxy radical with O ; and, in the presence of NO , a
2
1
2
x
12 R. E. Shetter, J. A. Davidson, C. A. Cantrell and J. G. Calvert,
Rev. Sci. Instrum., 1987, 58, 1427.
13 J. J. Orlando and G. S. Tyndall, J. Phys. Chem. A, 2002, 106, 312.
small (10–15%) occurrence of activated decomposition of
0
1
-ethoxyethoxy via H-atom elimination, reaction (4 ). Finally,
1
4 A. Notario, A. Mellouki and G. Le Bras, Int. J. Chem. Kinet.,
000, 32, 105.
a change in mechanism (lower yields of ethyl formate and ethyl
acetate) was noted at elevated temperature in the absence
2
15 M. A. Ferenac, A. J. Davis, A. S. Holloway and T. S. Dibble, J.
Phys. Chem. A, 2003, 107, 63.
of NO
x
, which might be the result of as-yet-undetermined
ꢀ
1
1
1
1
6 NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/.
7 R. Atkinson, J. Phys. Chem. Ref. Data, 1994, Monograph 2, 1.
8 R. Atkinson, Int. J. Chem. Kinet., 1997, 29, 99.
9 W. Braun, J. T. Herron and D. K. Kahaner, Int. J. Chem. Kinet.,
1
chemistry of the peroxy radical, CH CH OCH(OO )CH .
3
2
3
Acknowledgements
988, 20, 51.
0 J. Arey, S. M. Aschmann, E. S. C. Kwok and R. Atkinson, J. Phys.
Chem. A, 2001, 105, 1020.
2
The National Center for Atmospheric Research is operated by
the University Corporation for Atmospheric Research, under
the sponsorship of the National Science Foundation. This
work was funded in part by the NASA ROSES (Atmospheric
Composition) program. Thanks are due to Geoff Tyndall for
many helpful discussions and comments on the manuscript,
and to Alan Fried for his careful reading of the manuscript.
21 E. M. Collins, H. W. Sidebottom, J. C. Wenger, S. Le Calve, A.
Mellouki, G. LeBras, E. Villenave and K. Wirtz, J. Photochem.
Photobiol., A, 2005, 176, 86.
2
2 T. J. Wallington, J. M. Andino, A. R. Potts, S. J. Rudy, W. O.
Siegl, Z. Zhang, M. J. Kurylo and R. E. Huie, Environ. Sci.
Technol., 1993, 27, 98.
2
3 C. Taatjes, J. Phys. Chem. A, 2006, 110, 4299.
2
4 J. Sehested, T. Mogelberg, T. J. Wallington, E. W. Kaiser and O. J.
Nielsen, J. Phys. Chem., 1996, 100, 17218.
5 M. M. Maricq, J. J. Szente and J. D. Hybl, J. Phys. Chem. A, 1997,
2
References
1
01, 5155.
1
Intergovernmental Panel on Climate Change (IPCC) (2001), Cli-
mate Change 2001: The Scientific Basis, Contribution of Working
Group I to the Third Assessment Report of the Intergovernmental
Panel on Climate Change, ed. J. T. Houghton, Y. Ding, D. J.
Griggs, M. Noguer, P. J. van der Linden, X. Da, K. Maskell and C.
A. Johnson, Cambridge University Press, New York, p. 881.
W. P. L. Carter, Documentation of the SAPRC-99 chemical
mechanism for VOC reactivity assessment, Final Report to Cali-
fornia Air Resources Board Contract No. 92-329, and (in part)
26 J. Sehested, K. Sehested, J. Platz, H. Egsgaard and O. J. Nielsen,
Int. J. Chem. Kinet., 1997, 29, 627.
27 H. J. Curran, W. J. Pitz, C. K. Westbrook, P. Dagaut, J. C.
Boettner and M. Cathonnet, Int. J. Chem. Kinet., 1998, 30, 229.
28 H. J. Curran, S. L. Fischer and F. L. Dryer, Int. J. Chem. Kinet.,
2000, 32, 741.
29 D. A. Good and J. S. Francisco, J. Phys. Chem. A, 2000, 104, 1171.
30 T. Yamada, J. W. Bozzelli and T. H. Lay, Int. J. Chem. Kinet.,
2000, 32, 435.
2
9
31 I. Liu, N. W. Cant, J. H. Bromly, F. J. Barnes, P. F. Nelson and B.
S. Haynes, Chemosphere, 2001, 42, 583.
3
4
5
6
7
R. G. Derwent, M. E. Jenkin, S. M. Saunders and M. J. Pilling,
Atmos. Environ., 1998, 32, 2429.
A. Mellouki, S. Teton and G. LeBras, Int. J. Chem. Kinet., 1995,
32 A. Andersen and E. A. Carter, Isr. J. Chem., 2002, 42, 245.
33 C. M. Rosado-Reyes, J. S. Francisco, J. J. Szente, M. M. Maricq
and L. F. Ostergaard, J. Phys. Chem. A, 2005, 109, 10940.
34 K. T. Kuwata, A. S. Hasson, R. V. Dickinson, E. B. Petersen and
L. C. Valin, J. Phys. Chem. A, 2005, 109, 2514.
2
7, 791.
T. J. Wallington and S. M. Japar, Environ. Sci. Technol., 1991, 25,
10.
4
J. Eberhard, C. Muller, D. W. Stocker and J. A. Kerr, Int. J. Chem.
Kinet., 1993, 25, 639.
S. A. Cheema, K. A. Holbrook, G. A. Oldershaw, D. P. Starkey
and R. W. Walker, Phys. Chem. Chem. Phys., 1999, 1, 3243.
35 F. Jorand, A. Heiss, O. Perrin, K. Sahetchian, L. Kerhoas and J.
Einhorn, Int. J. Chem. Kinet., 2003, 35, 354.
36 O. Perrin, A. Heiss, K. Sahetchian, L. Kerhoas and J. Einhorn, Int.
J. Chem. Kinet., 1998, 30, 875.
This journal is ꢄc the Owner Societies 2007
Phys. Chem. Chem. Phys., 2007, 9, 4189–4199 | 4199