Chemistry Letters 2002
299
Table 2. Catalytic, enantioselective propargyl- and allenylation reactionsa
Massy-Westropp, and P. Razzino, Tetrahedron, 51, 4183 (1995). c) K.
Tanaka, M. Ahn, Y. Watanabe, and K. Fuji, Tetrahedron: Asymmetry, 7,
1771 (1996). d) S. Collet, P. Bauchat, R. Danion-Bougot, and D.
Danion, Tetrahedron: Asymmetry, 9, 2121 (1998). e) N. J. Church and
D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1998, 1475.
J. P. Scannell, D. L. Pruess, T. C. Demny, F. Weiss, T. Williams, and A.
Stempel, J. Antibiot., 24, 239 (1971). O. Leukart, M. Caviezel, A.
Eberle, E. Escher, A. Tun-Kyi, and R. Schwyzer, Helv. Chim. Acta, 59,
2181 (1976).
a) C. Walsh, Tetrahedron, 38, 871 (1982). b) E. M. Wallace, J. A.
Moliterni, M. A. Moskal, A. D. Neubert, N. Marcopulos, L. B. Stamford,
A. J. Trapani, P. Savage, M. Chou, and A. Y. Jeng, J. Med. Chem., 41,
1513 (1998).
development of allenylation of 1 with propargyltins. The reaction
of methyl-substituted propargyltin 2d afforded a mixture of 3c
and 4c in 95% yield with a high regioselectivity (3c : 4c ¼ 5 : 95,
entry 4). Unfortunately, the enantiomeric excess of the major
product 4c was moderate (61% ee). When the reaction of phenyl-
substituted propargyltin 2e was carried out, 4d was obtained in a
moderate yield with high enantiomeric excess (25%, 97% ee,
entry 5). Gratifyingly, both yield and enantiomeric excess were
greatly improved when trimethylsilyl-substituted propargyltin 2f
was used. The corresponding allenyl-substituted amine 4e was
obtained in 93% ee (entry 6).
8
9
In summary, we have developed catalytic, enantioselective
propargyl- and allenylation reactions of ꢀ-imino ester in the
presence of [Cu(MeCN)4]ClO4/(R)-tol-BINAP catalyst. The
present reaction provides a new methodology for the synthesis
of optically active ꢀ-amino acid derivatives.
10G. T. Crisp and T. A. Robertson, Tetrahedron, 48, 3239 (1992). L. B.
Wolf, K. C. M. F. Tjen, F. P. J. T. Rutjes, H. Hiemstra, and H. E.
Schoemaker, Tetrahedron Lett., 39, 5081 (1998).
11 Catalytic, enantioselective propargyl- and allenylation reactions of
aldehydes have been reported: G. E. Keck, D. Krishnamurthy, and X.
Chen, Tetrahedron Lett., 35, 8323 (1994). C.-M. Yu, S.-K. Yoon, H.-S.
Choi, and K. Baek, Chem. Commun., 1997, 763. C.-M. Yu, S.-K. Yoon,
K. Baek, and J.-Y. Lee, Angew. Chem., Int. Ed., 37, 2392 (1998). S. E.
Denmark and T. Wynn, J. Am. Chem. Soc., 123, 6199 (2001). D. A.
Evans, Z. K. Sweeney, T. Rovis, and J. S. Tedrow, J. Am. Chem. Soc.,
123, 12095 (2001).
Dedicated to Professor Teruaki Mukaiyama on the occasion
of his 75th birthday.
References and Notes
12 ðRÞ-tol-BINAP ¼ ðRÞ-2,20-bis(di-p-tolylphosphino)-1,10-binaphthyl;
ðRÞ-BINAP ¼ ðRÞ-2,20-bis(diphenylphosphino)-1,10-binaphthyl;ðR; RÞ-
DIOP ¼ ðR; RÞ-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenyl-
phosphino)-butane.
1
2
S. Kobayashi and H. Ishitani, Chem. Rev., 99, 1069 (1999).
Mannich reactions: a) E. Hagiwara, A. Fujii, and M. Sodeoka, J. Am.
Chem. Soc., 120, 2474 (1998). b) D. Ferraris, B. Young, T. Dudding, and
T. Lectka, J. Am. Chem. Soc., 120, 4548 (1998). c) D. Ferraris, B.
Young, C. Cox, W. J. Drury, III, T. Dudding, and T. Lectka, J. Org.
Chem., 63, 6090 (1998). d) K. Juhl, N. Gathergood, and K. A. Jꢀrgensen,
Angew. Chem., Int. Ed., 40, 2995 (2001).
Ene reactions: W. J. Drury, III, D. Ferraris, C. Cox, B. Young, and T.
Lectka, J. Am. Chem. Soc., 120, 11006 (1998). S. Yao, X. Fang, and K.
A. Jꢀrgensen, Chem. Commun., 1998, 2547.
Allylation reactions: X. Fang, M. Johannsen, S. Yao, N. Gathergood, R.
G. Hazell, and K. A. Jꢀrgensen, J. Org. Chem., 64, 4844 (1999).
Cycloaddition reactions: S. Yao, S. Saaby, R. G. Hazell, and K. A.
Jꢀrgensen, Chem. Eur. J., 6, 2435 (2000).
Other alkylation reactions: a) M. Johannsen, Chem. Commun., 1999,
2233. b) N. Nishiwaki, K. R. Knudsen, K. V. Gothelf, and K. A.
Jꢀrgensen, Angew. Chem., Int. Ed., 40, 2992 (2001).
13 A typical experimental procedure for entry 1 of Table 2: The catalyst
was prepared by treating [Cu(MeCN)4]ClO4 (0.65 mg, 2.0 ꢁmol) and
(R)-tol-BINAP (1.49 mg, 2.2 ꢁmol) in ether (1 mL) and stirring at room
temperature for 0.5 h. To this mixture was added 1 (102 mg, 0.40 mmol)
in ether (0.5 mL), and the resultant mixture was cooled to À30 ꢁC. To
this mixture was added 2a (66 mg, 0.20 mmol). After being stirred for
5 h at this temperature, the reaction was quenched with 10% aqueous
KF. The aqueous layer was extracted with ether, and the combined
organic layers were washed with brine and dried over Na2SO4. After
filtration and concentration, the residue was purified by column
chromatography (SiO2, eluent: hexane to hexane/EtOAc ¼ 5=1) to
give the mixture of 3a and 4a (57 mg, 96%, 3a : 4a ¼ 97 : 3). The
enantiomeric excess of 3a was determined to be 86% by HPLC analysis
using Chiralpak AD column (hexane/iPrOH ¼ 5=1).
3
4
5
6
7
a) S. Ikegami, H. Uchiyama, T. Hayama, T. Katsuki, and M.
Yamaguchi, Tetrahedron, 44, 5333 (1988). b) D. P. G. Hamon, R. A.