P. Flores-Morales et al. / Bioorg. Med. Chem. 19 (2011) 1613–1622
1621
tube lens and capillary temperature were tuned to 35 V, 135 V and
200 °C, respectively. Acquisitions were performed in data-depen-
dent mode. Survey full-scan MS spectra (m/z 295-2000) were ac-
quired in the FT at 100,000 resolution (after accumulation of a
target value of 106). The three most intense ions were sequentially
isolated for fragmentation and detection in the linear ion trap
using collision induced dissociation (CID) at a target value of
50,000, 1 microscan averaging and a normalized collision energy
(CE) of 35%. Target ions already selected for MS/MS were dynami-
cally excluded for 30 s. Further CID analyses were also performed
off-line using the nanomate source by infusing the LC-collected
fractions of interest. A normalized CE of 35–42% was applied to
the ion trap isolated ions with high resolution (100,000) detection
in the FT and 200–1000 scan averaging.
atomic structure of the molecule, and the electrostatic potential
is determined by using the Poisson–Boltzmann equation.66 The
dielectric constant for the solvent was 80, and for the protein
was ranged from 4 to 20. Partial atomic charges were taken from
the AMBER (parm99)67 force field, and atomic radii from the opti-
mized values developed by Poisson–Boltzmann computations with
AMBER charges.68 The ionic strength was fixed at 0.1 M. The pro-
tein was initially located in the geometric center (101 Å3 box; grid
step of 1.0 Å), and then refined by focusing the grid on the active
site (101 Å3 box; grid step of 0.5 Å).
Acknowledgements
The authors thank Prof. Neil Kelleher and his team (Chemistry
Department at University of Illinois) for technical assistance and
advice. Financial support from FONDECYT through Project Nos.
1050965, 1090460, and 1100881 is gratefully acknowledged. P.
Flores-Morales thanks CONICYT for a post-doctoral fellowship.
4.6. MS data analysis
Mass spectrometers were powered by Xcalibur software 2.07.
Xcalibur Xtract algorithms and ProMass software version 2.8
(ThermoFisher Scientific) were used for charged state ion deconvo-
lution to zero charged species. MS/MS high resolution spectra of in-
tact proteins were deconvoluted with the in-house on-line
automation cRawler software (Prof. N.L. Kelleher’s property). Bio-
works 3.3.1 and Protein Calculator from Xcalibur software were
used to calculate theoretical molecular weights of intact and di-
gested proteins. Single protein and Sequence gazer options from
Prosight PC 2.0 (ThermoFisher Scientific)60 software were used to
localize modified residues from experimental high resolution MS/
MS data, after fragment ions Xtract deconvolution to zero charged
monoisotopic masses. MS raw data files from digested proteins
were processed with Proteome Discoverer vs. 1.1 (ThermoFisher
Scientific) against G6PD sequence.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Baynes, J. W.; Watkins, N. G.; Fisher, C. I.; Hull, C. J.; Patrick, J. S.; Ahmed, M. U.;
Dunn, J. A.; Thorpe, S. R. In Monnier, V. M., Baynes, J. W., Eds.; The Maillard
Reaction in Aging, Diabetes and Nutrition; Alan R. Liss: New York, 1989; pp 43–
67.
2. Vlassara, H.; Bucala, R.; Strike, L. Lab. Invest. 1994, 70, 138.
3. Yim, M. B.; Yim, H.-S.; Lee, C.; Kang, S.-O.; Chock, P. B. Ann. N. Y. Acad. Sci. 2001,
928, 48.
4. Reddy, V. P.; Beyaz, A. Drug Discovery Today 2006, 11, 646.
5. Hartman, F. C.; Milanez, S.; Lee, E. H. J. Biol. Chem. 1985, 260, 13968.
6. Fitch, C. A.; Karp, D. A.; Lee, K. K.; Stites, W. E.; Lattman, E. E.; García-Moreno, B.
Biophys. J. 2002, 82, 3289.
4.7. Quantum chemical calculations
7. Takayama, Y.; Castañeda, C. A.; Chimenti, M.; García-Moreno, B.; Iwahara, J. J.
Am. Chem. Soc. 2008, 130, 6714.
8. Phillips, S. A.; Thornalley, P. J. Eur. J. Biochem. 1993, 212, 101.
9. Thornalley, P. J.; Langborg, A.; Minhas, H. S. Biochem. J. 1999, 344, 109.
10. Yoshino, K.; Sano, M.; Matsuura, T.; Hagiwara, M.; Tomita, I. Jpn. J. Toxicol.
Environ. Health 1996, 42, 236.
11. Haik, G. M. J.; Thornalley, P. J. Exp. Eye Res. 1994, 59, 497.
12. McLellan, A. C.; Thornalley, P. J.; Benn, J.; Sonksen, P. H. Clin. Sci. 1994, 87, 21.
13. Stitt, A. W. Ann. N. Y. Acad. Sci. 2005, 1043, 582.
The reactive properties of amines were characterized by chem-
ical reactivity descriptors determined at the B3LYP/6-311G(d) le-
vel,61,62 considering the aqueous solvent effect by using the
Polarizable Continuum Model (PCM)63 as implemented in GAUSS-
IAN-03.64 Attention was paid to the dual descriptor of chemical
reactivity and selectivity defined as:65
fðrÞ ¼ fþðrÞ ꢂ fꢂðrÞ ꢅ qLðrÞ ꢂ qHðrÞ
ð3Þ
14. Gugliucci, A.; Menini, T. Life Sci. 2003, 72, 2603.
D
15. Attanasio, F.; Cataldo, S.; Fisichella, S.; Nicoletti, S.; Nicoletti, V. G.; Pignataro,
B.; Savarino, A.; Rizzarelli, E. Biochemistry 2009, 48, 6522.
16. Alhamandi, M.-S. S.; Al-Kassir, A.-H. A.-M.; Abbas, F. K. H.; Jaleel, N. A.; Al-Taee,
M. F. Nephron. Clin. Pract. 2007, 107, 26.
17. Battah, S.; Ahmed, N.; Thornalley, P. J. Int. Cong. Series 2002, 1245, 107.
18. Brinkmann, E.; Degenhardt, T. P.; Thorp, S. R.; Baynes, J. W. J. Biol. Chem. 1998,
273, 18714.
where fþ=ꢂðrÞ stands for Fukui functions that characterize the re-
sponse of the system at point r when dealing with nucleophilic
(fþðrÞ) or electrophilic (fꢂðrÞ) attacks, and qLðrÞ and qHðrÞ are the
densities associated to the lowest unoccupied and highest occupied
molecular orbitals, respectively. Positive/negative values of
identify regions susceptible to react with nucleophilic/electrophilic
reagents.
D
fðrÞ
19. Ahmed, N.; Thornalley, P. J.; Dawczynski, J.; Franke, S.; Strobel, J.; Stein, G.;
Haik, G. M. Invest. Ophthalmol. Vis. Sci. 2003, 44, 5287.
20. Meade, S. J.; Miller, S. G.; Gerrard, J. A. Bioorg. Med. Chem. 2003, 11, 853.
21. Sasaki, N. A.; García-Alvarez, M. C.; Wang, Q.; Ermolenko, L.; Franck, G.; Nhiri,
N.; Martin, M.-T.; Audic, N.; Potier, P. Bioorg. Med. Chem. 2009, 17, 2310.
22. Khan, K. M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.; Perveen, S.;
Choudhary, M. I. Bioorg. Med. Chem. 2009, 17, 2447.
4.8. pKa predictions
23. Krishna, M.; Uppuluri, S.; Riesz, P.; Balasubramanian, D. Photochem. Photobiol.
1991, 54, 51.
24. Wu, S.; Leske, M. C. Int. Ophthalmol. Clin. 2000, 40, 71.
25. Beswick, H. T.; Harding, J. J. Exp. Eye Res. 1987, 45, 569.
26. Abiko, T.; Abiko, A.; Ishiko, S.; Takeda, T.; Horiuchi, S.; Yoshida, A. Curr. Eye Res.
1997, 16, 534.
27. Bhattacharyya, J.; Shipova, E. V.; Santhosskumar, P.; Krishna-Sharma, K.;
Ortwerth, B. J. Biochemistry 2007, 46, 14682.
28. Linetsky, M.; Shipova, E.; Cheng, R.; Ortwerth, B. J. Biochim. Biophys. Acta 2008,
1782, 22.
29. Lou, M. F. Prog. Retin. Eye Res. 2003, 22, 657.
30. Kamei, A. Biol. Pharm. Bull. 1993, 16, 870.
31. Giblin, F. J. J. Ocul. Pharmacol. Ther. 2000, 16, 121.
32. Orzalesi, N.; Sorcinelli, R.; Guiso, G. Arch. Ophthalmol. 1981, 99, 69.
33. Bours, J.; Fink, H.; Hockwin, O. Curr. Eye Res. 1988, 7, 449.
34. Udenfriend, S.; Stein, S.; Bohlen, P.; Dairman, W.; Leimgruber, W.; Weigle, M.
Science 1972, 178, 871.
The ionization properties of selected basic residues were exam-
ined by titration computations performed for a diverse set of X-ray
crystallographic structures of L. mesenteroides G6PD (PDB entries
1DPG, 1E77, 1E7Y, 1E7M, 1H93, 1H94 and 1H9A). In all cases,
any substrate and/or co-factor were deleted prior to computations.
The ionization state was determined using PROPKA method,37,38
which takes into account the desolvation cost of ionizable residues,
as well as hydrogen-bonding and charge–charge interactions with
neighboring residues in the protein. Additional calculations were
performed with MEAD program,39 which relies on a semi-macro-
scopic treatment of biomolecules where the interiors of the protein
and the solvent have different dielectric constants. The boundary
between the different dielectric regions depends on the detailed