10.1002/chem.201701893
Chemistry - A European Journal
FULL PAPER
(g) J. Lü, C. Perez-Krap, M. Suyetin, N. H. Alsmail, Y. Yan, S. Yang, W.
Lewis, E. Bichoutskaia, C. C. Tang, A. J. Blake, R. Cao, M. Schröder, J.
Am. Chem. Soc. 2014, 136, 12828-12831; (h) P. Li, Y. He, Y. Zhao, L.
Weng, H. Wang,R. Krishna, H. Wu, W. Zhou, M. O’Keeffe, Y. Han, B.
Chen, Angew. Chem. 2015, 127, 584-587; Angew. Chem. Int. Ed. 2015,
54, 574-577. (i) H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S.
Xiang, B. Chen. J. Am. Chem. Soc. 2015, 137, 9963-9970.
results clearly show that even a simple H-bonding motif can be
applied for construction of robust HOFs.
Surprisingly, CPHAT in DMF solutions exhibits a strong
allowed S0→S1 transition, while it is prohibited in its parent
molecule (the core), which does not display this absorption band.
The change in the symmetry of CPHAT is due to the introduction
of the benzoic groups in the core. These groups act as a glue to
build up single crystals (of micrometers in length) having a clean
rod shape. CPHAT molecule shows broad emission band as a
result of an ultrafast ICT process followed by an intermolecular
proton transfer reaction (70 ps) at the excited state with DMF
molecules to generate the anion of CPHAT. Fluorescence
microscopy study at single crystal level reveals an ordered
crystalline structure for both CPHAT-1-(TCB) and CPHAT-1a with
preferential orientation of the molecular dipole moments.
Interestingly, the interaction of CPHAT-1a with TCB molecules in
the formed crystal leads to a heterogeneous distribution of the
molecular interactions as a result of H-bonds formation with the
co-solvent upon crystal formation.
[5]
[6]
O. Ivasenko, D. F. Perepichka, Chem. Soc. Rev. 2011, 40, 191-206.
(a) D. J. Duchamp, R. Marsh, Acta. Crystallogra. B 1969, 25, 5–19; (b)
F. H. Herbstein, M. Kapon, G. M. Reisner, J. Inclusion Phenom. 1987, 5,
211–214; (c) K. Kobayashi, T. Shirasaka, E. Horn, N. Furukawa,
Tetrahedron Lett. 2000, 41, 89–93; (d) I. Hisaki, N. Q. E. Affendy, N.
Tohnai, CrystEngComm 2017, in press.
[7]
[8]
(a) C. A. Zentner, H. W. H. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller,
C. F. Campana, O. Talu, S. A. FitzGerald, J. L. C. Rowsell, Chem.
Commun. 2015, 51, 11642-11645; (b) S. Nandi, D. Chakraborty, R.
Vaidhyanathan, Chem. Commun. 2016, 52, 7249-7252; (c) F. Hu, C. Liu,
M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. 2017, 129,
2133-2136; Angew. Chem. Int. Ed. 2017, 56, 2101-2104.
(a) I. Hisaki, S. Nakagawa, N. Tohnai, M. Miyata, Angew. Chem. 2015,
127, 3051-3055; Angew. Chem. Int. Ed. 2015, 54, 3008-3012; (b) I.
Hisaki, N. Ikenaka, N. Tohnai, M. Miyata, Chem. Commun. 2016, 52,
300-303. (c) I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda,
M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, J. Am.
Chem. Soc. 2016, 138, 6617-6628; (d) I. Hisaki, S. Nakagawa, H. Sato,
N. Tohnai, Chem. Commun. 2016, 52, 9781-9784.
Acknowledgements
[9]
(a) J. L. Segura, R. Juárez, M. Ramos, C. Deoane, Chem. Soc. Rev.
2015, 44, 6850-6885.
This work is supported by a Grant-in-Aid for Scientific Research
(C) (JPT15K04591) and for Scientific Research on Innovative
Areas: π-System Figuration (JP15H00998) from MEXT Japan,
and by the MINECO and JCCM through projects: MAT2014-
57646-P and PEII-2014-003-P. E.G. thanks the MEC (Spain) for
the FPU fellowship. We thank Prof. Shu Seki at Kyoto University
for FP-TRMC experiments and SEM measurements.
Crystallographic data were partly collected using synchrotron
radiation at the BL38B1 in the SPring-8 with approval of JASRI
(proposal nos. 2015B1397, 2016A1121, and 2016B1151).
[10] S. Kitagawa, S. Masaoka, Coord. Chem. Rev. 2003, 246, 73-88.
[11] M. Shatruk, A. Chouai, K. R. Dunbar, Dalton Trans. 2006, 2184-2191. (b)
J. R. Galán-Mascarós, K. R. Dunbar, Chem. Commun. 2001, 217-218.
[12] S.-Q. Xu, T.-G. Zhan, Q. Wen, Z.-F. Pang, X. Zhao, ACS Macro Lett.
2016, 5, 99-102.
[13] D. Z. Rogers, J. Org. Chem. 1986, 51, 3904-3905.
[14] O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, Acta Crystallogr. A 2003 59,
22-27.
[15] ToposPro, the program package for multipurpose geometrical and
topological analysis of crystal structures, was used for evaluation of the
network topology, see; E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov,
D. M. Proserpio, CrystEngComm 2011, 13, 3947-3958.
Keywords: porous organic framework • hydrogen bonds •
[16] M. Li, M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2014, 114, 1343-1370.
[17] T. K. Maji, R. Matsuda, S. Kitagawa, Nat. mater. 2007, 6, 142-148.
[18] M. R. Hudson, W. L. Queen, J. A. Mason, D. W. Fickel, R. F. Lobo, C. M.
Brown, J. Am. Chem. Soc. 2012, 134, 1970-1973.
carboxylic acid• crystal engineering• fluorescence
[1]
(a) J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915-920; (b)
X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010-6022; (c) M.
Mastalerz, Chem. Eur. J. 2012, 18, 10082-10091; (d) S.-Y. Ding, W.
Wang, Chem. Soc. Rev. 2013, 42, 548-568; (e) M. Dogru, T. Bein, Chem.
Commun. 2014, 50, 5531-5546; (f) A. G. Skater, A. I. Cooper, Science,
2015, 348, 988; (g) P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem.
Res. 2015, 48, 3053-3063; (h) N. Huang, P. Wang, D. Jiang, Nat. Rev.
Mater. 2016, 1, 16068.
[19] J. Lü, C. Perez-Krap, M. Suyetin, N. H. Alsmail, Y. Yan, S. Yang, W.
Lewis, E. Bichoutskaia, C. C. Tang, A. J. Blake, R. Cao, M. Schröder.
[20] H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun,
Nat. Commun. 2013, 4:1357.
[21] Examples for iodine sorption of porous materials, see; (a) T. Hasell, M.
Schmidtmann, A. I. Cooper, J. Am. Chem. Soc. 2011, 133, 14920-14923;
(b) J. Martí-Rujas, N. Islam, D. Hashizume, F. Izumi, M. Fujita, M.
Kawano, M. J. Am. Chem. Soc. 2011, 133, 5853-5860. (c) Z. Yin, Q.-X.
Wang, M.-H. Zeng, J. Am. Chem. Soc. 2012, 134, 4857-4863; (d) W.-Q.
Xu, Y.-H. Li, H.-P. Wang, J.-J. Jiang, D. Fenske, C.-Y. Su, Chem. Asian.
J. 2016, 11, 216-220; (e) S.-S. Zhao, L. Chen, X. Zheng, L. Wang, Z. Xie,
Chem. Asian J. 2017, 12, 615-620.
[2]
[3]
G. R. Desiraju, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311-2327.
Review for HOFs, see; J. Lu, R. Cao, Angew. Chem. 2016, 128, 9624-
9630; Angew. Chem. Int. Ed. 2016, 55, 9474-9480.
[4]
Examples of HOFs with permanent porosity, see; (a) A. R. A. Palmans,
J. A. J. M. Vekemans, H. Kooijman, A. L. Spek, E. W. Meijer, Chem.
Commun. 1997, 2247-2248; (b) P. Sozani, S. Bracco, A. Comotti, L.
Ferretti, R. Simonutti, Angew. Chem. 2005, 117, 1850-1854; Angew.
Chem. Int. Ed. 2005, 44, 1816-1820; (c) Y. He, S. Xiang, B. Chen, J. Am.
Chem. Soc. 2011, 133, 14570-14573; (d) M. Mastalerz, I. M. Oppel,
Angew. Chem. 2012, 124, 5345-5348; Angew. Chem. Int. Ed. 2012, 51,
5252-5255; (e) X.-Z. Luo, X.-J. Jia, J.-H. Deng, J.-L. Zhong, H.-J. Liu, K.-
J. Wang, D.-C. Zhong, J. Am. Chem. Soc. 2013, 135, 11684-11687; (f)
T.-H.Chen, I. Popov, W. Kaveevivitchai, Y.-C.Chuang, Y.-S. Chen, O.
Daugulis, A. J. Jacobson, O. Š. Miljanić, Nat. Commun. 2014, 5. 5131;
[22] H. S. El-Sheshtawy, B. S. Bassil, K. I. Assaf, U. Kortz, W. M. Nau, J. Am.
Chem. Soc. 2012, 134, 19935-19941.
[23] F. van Bolhuis, P. B. Koster, T. Migchelsen, Acta Crystallogra. 1967, 23,
90-91.
[24] R. Juárez, M. M. Oliva, M. Ramos, J. L. Segura, C. Alemán, F.
Rodríguez-Ropero, D. Curcó, F. Montilla, V. Coropceanu, J. L. Brédas,
Y. Qi, A. Kahn, M. C. Ruiz Delgado, J. Casado, J. T. López Navarrete,
Chem. Eur. J. 2011, 17, 10312-10322.
This article is protected by copyright. All rights reserved.