C O M M U N I C A T I O N S
preliminary data were obtained which suggest that inhibition
measured by TRAP does not actually reflect telomerase inhibition
but may result from an inhibition of the PCR amplification on
quadruplex-prone motifs even though the internal PCR control
(ITAS) is not affected (Supporting Information). Detailed explana-
tions will be reported elsewhere. Nevertheless, the obtained results,
among the best reported to date, represent a ∼20-fold improvement
as compared to the parent pyridine series4c,7 and may reflect
somehow the very good affinity of those ligands for quadruplex-
prone motifs, confirming FRET melting results.
In conclusion, the present paper describes the quadruplex-binding
properties of new members of the bisquinolinium family. Their easy
synthetic access combined with exceptional quadruplex affinities
and selectivities place these ligands among the most potent ones
reported so far. Further in vitro evaluations are currently underway.
Acknowledgment. This work was supported by ARC (#3365)
and E.U. FP6 “MolCancerMed” (LSHC-CT-2004-502943) grants.
The authors gratefully thank Dr. P. Mailliet for helpful discussions.
Figure 2. (A) FRET experiments carried out with 2a and F21T without
ligand (black) and with 1 µM 2a in absence (blue) or presence of competitive
duplex (ds26, 3 equiv (red) or 10 equiv (gray)). (B) FRET results (∆T1/2
,
Supporting Information Available: Synthesis and characterization
of 1a-2b; experimental procedures and additional FRET and CD data.
This material is available free of charge via the Internet at http://
pubs.acs.org.
°C) for 1a/b and 2a/b (1 µM) in absence (blue) or presence of competitive
ds26 (3 equiv (red) or 10 equiv (gray)). (C and D) CD titration of 22AG (3
µM in 10 mM lithium cacodylate, pH 7.2, 100 mM NaCl buffer) by
increasing amounts of 2a: (C) some CD spectra at 296 nm from the titration
experiment; the arrow indicates the increasing amounts of ligand (from black
to red curves: 0, 1.2, 2.4, 3.6, 4.7, 5.9, 7.1, 8.2, 9.4, and 10.9 µM); (D) CD
signal as a function of 2a molar equivalents (0.4 µM increments).
References
(1) Wheelhouse, R. T.; Jennings, S. A.; Phillips, V. A.; Pletsas, D.; Murphy,
P. M.; Garbett, N. C.; Chaires, J. B.; Jenkins, T. C. J. Med. Chem. 2006,
49, 5187.
(2) Neidle, S.; Parkinson, G. N. Curr. Opin. Struct. Biol. 2003, 13, 275.
(3) (a) Cogoi, S. C.; Xodo, L. E. Nucleic Acids Res. 2006, 34, 2536. (b)
Dexheimer, T. S.; Sun, D.; Hurley, L. H. J. Am. Chem. Soc. 2006, 128,
5404. (c) Dai, J.; Dexheimer, T. S.; Chen, D.; Carver, M.; Ambrus, A.;
Jones, R. A.; Yang, D. J. Am. Chem. Soc. 2006, 128, 1096. (d) Xu, Y.;
Sugiyama, H. Nucleic Acids Res. 2006, 34, 949. (e) De Armond, R.; Wood,
S.; Sun, D.; Hurley, L. H.; Ebbinghaus, S. W. Biochemistry 2005, 44,
16341. (f) Phan, A. T.; Kuryavyi, V.; Gaw, H. Y.; Patel, D. J. Nat. Chem.
Biol. 2005, 1, 167. (g) Sun, D.; Guo, K.; Rusche, J. J.; Hurley, L. H.
Nucleic Acids Res. 2005, 33, 6070. (h) Rankin, S.; Reszka, A. P.; Huppert,
J.; Zloh, M.; Parkinson, G. N.; Todd, A. K.; Ladame, S.; Balasubramanian,
S.; Neidle, S. J. Am. Chem. Soc. 2005, 127, 10584.
Figure 3. Selected dimensions of a G-quartet (left, determined from X-ray
structure) and of 2a (right, after molecular mechanics (MM2) calculations
(Chem3D Ultra 8.0, CambridgeSoft Corp., MA)).
(4) (a) Burger, A. M.; Dai, F.; Schultes, C. M.; Reszka, A. P.; Moore, M. J.
B.; Double, J. A.; Neidle, S. Cancer Res. 2005, 65, 1489. (b) Kim, M.
Y.; Vankayalapati, H.; Shin-Ya, K.; Wierzba, K.; Hurley, L. H. J. Am.
Chem. Soc. 2002, 124, 2098. (c) Pennarun, G.; Granotier, C.; Gauthier,
L. R.; Gomez, D.; Hoffschir, F.; Mandine, E.; Riou, J.-F.; Mergny, J.-L.;
Mailliet, P.; Boussin, F. Oncogene 2005, 24, 2917.
(5) (a) Shin-ya, K.; Wierzba, K.; Matsuo, K.-I.; Ohtani, T.; Yamada, Y.;
Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123, 1262.
(b) Tahara, H.; Shin-ya, K.; Seimiya, H.; Yamada, H.; Tsuruo, T.; Ide, T.
Oncogene 2006, 25, 1955. (c) Gomez, D.; O’Donohue, M. F.; Wenner,
T.; Douarre, C.; Macadre, J.; Koebel, P.; Giraud-Panis, M. J.; Kaplan,
H.; Kolkes, A.; Shin-ya, K.; Riou, J.-F. Cancer Res. 2006, 66, 6908.
(6) Doi, T.; Yoshida, M.; Shin-ya, K.; Takahashi, T. Org. Lett. 2006, 8, 4165.
(7) (a) Lemarteleur, T.; Gomez, D.; Paterski, R.; Mandine, E.; Mailliet, P.;
Riou, J.-F. Biochem. Biophys. Res. Commun. 2004, 323, 802. (b) Granotier,
C.; Pennarun, G.; Riou, L.; Hoffshir, F.; Gauthier, L. R.; De Cian, A.;
Gomez, D.; Mandine, E.; Riou, J.-F.; Mergny, J.-L.; Mailliet, P.;
Dutrillaux, B.; Boussin, F. D. Nucleic Acids Res. 2005, 33, 4182.
(8) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.-M. Nature 2000,
407, 720.
(9) Mergny, J.-L.; Maurizot, J.-C. ChemBioChem 2001, 2, 124.
(10) (a) Schultes, C. M.; Guyen, B.; Cuesta, J.; Neidle, S. Bioorg. Med. Chem.
Lett. 2004, 14, 4347. (b) Moore, M. J. B.; Schultes, C. M.; Cuesta, J.;
Cuenca, F.; Gunaratnam, M.; Tanious, F. A.; Wilson, W. D.; Neidle, S.
J. Med. Chem. 2006, 49, 582. (c) Reed, J. E.; Arnal, A. A.; Neidle, S.;
Vilar, R. J. Am. Chem. Soc. 2006, 128, 5992.
(11) Mergny, J.-L.; Lacroix, L.; Teulade-Fichou, M.-P.; Hounsou, C.; Guittat,
L.; Hoarau, M.; Arimondo, P. B.; Vigneron, J. P.; Lehn, J.-M.; Riou, J.-
F.; Garestier, T.; He´le`ne, C. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3062.
(12) De Cian, A.; Guittat, L.; Shin-ya, K.; Riou, J.-F.; Mergny, J.-L. Nucleic
Acids Symp. Ser. 2005, 49, 235.
to the duplex competition (29 and 35% loss in stabilization for 1a/
b, respectively (Figure 2B).
To determine the stoichiometry of association of 2a and
G-quadruplexes, CD titrations were carried out using the 22AG
sequence (AG3[T2AG3]3, in Na+ buffer, Figure 2C and Supporting
Information).13 Analysis of the data indicates that the curve
inflection occurs at ∼2:1 ligand/quadruplex ratio (Figure 2D). This
2:1 stoichiometry is consistent with a binding mode based on the
stacking of the ligand onto the two external G-quartets of the
quadruplex (Supporting Information).
A close examination of the crystal structure of 22AG (1KF1,
RCSB Protein Data Bank)14 shows that a G-quartet can be
considered as a square aromatic surface whose dimensions are
closely related to that of 2a (Figure 3 and Supporting Information).
The strong stabilization properties of ligands 2 could thus originate
in this accurate geometrical complementarity. Subsequently, the
molecular size may be unfavorable for interaction with a classical
base pair in duplex DNA,1 resulting in the high preference for the
quadruplex. Consequently, the molecular organization of the central
core (internal H-bonds) and electronic/electrostatic properties (two
quinolinium side arms) make phenanthroline bisquinolinium deriva-
tives 2 perfectly fitted for the recognition of the quadruplex target.
Finally, the inhibitory properties of these ligands were evaluated
via a classical TRAP assay (Supporting Information). However,
(13) Allain, C.; Monchaud, D.; Teulade-Fichou, M.-P. J. Am. Chem. Soc. 2006,
128, 11890.
(14) Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2002, 417, 876.
JA067352B
9
J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007 1857