9
774
L. Cui et al. / Electrochimica Acta 56 (2011) 9769–9774
Table 1
Determination of nitrite in three different ham samples.
−
−
Founda (NO2 , M)
−
Sample
Content (NO2 , M)
Added (NO2 , M)
Spectroscopy
R.S.D. (%)
Recovery (%)
1
2
3
1.95 ± 0.21
2.02 ± 0.32
1.89 ± 0.20
2.50
2.50
2.50
4.49 ± 0.25
4.58 ± 0.34
4.28 ± 0.23
4.53 ± 0.31
4.61 ± 0.43
4.32 ± 0.36
3.2
2.8
2.5
100.9
101.33
97.49
a
Mean for five separate measurements.
that this proposed method could potentially be used for sensitively
monitoring the concentration of NaNO2.
References
[
1] N. Spataru, T.N. Rao, D.A. Tryk, A. Fujishima, J. Electrochem. Soc. 148 (2001)
E112.
3
.8. Interference
[
[
[
[
2] A. Amine, G. Palleschi, Anal. Lett. 37 (2004) 1.
3] W. Lijinsky, S.S. Epstein, Nature 225 (1970) 21.
4] S.S. Mirvish, Cancer Lett. 93 (1995) 17.
The potential interference for the detection of nitrite using this
biosensor was also examined by adding the following ions into the
PBS solution (pH 7.0) at the same concentration that was used for
5] X. Cao, N. Wang, Sens. Actuators B 137 (2009) 710.
[6] X. Huang, Y. Li, Y. Chen, L. Wang, Sens. Actuators B 134 (2008) 780.
[7] Z. Dai, H. Bai, M. Hong, Y. Zhu, J. Bao, J. Shen, Biosens. Bioelectron. 23 (2008)
nitrite: K , Na , Mg , Zn , NH4+, F , Cl , NO , SO4 , CO3
+
+
2+
2+
−
−
−
2−
2−
,
3
1869.
−
2−
3−
H PO , HPO4 and PO4 . None of the ions caused interference.
2
4
[8] G. Zhao, J. Xu, H. Chen, Anal. Biochem. 350 (2006) 145.
Additionally, a 50-fold amount of dopamine was tested and showed
no interference.
[9] M.G. Almeida, C.M. Silveira, J.J.G. Moura, Biosens. Bioelectron. 22 (2007)
2485.
[
[
10] W. Yang, Y. Bai, Y. Li, C. Sun, Anal. Bioanal. Chem. 382 (2005) 44.
11] Q. Wu, G.D. Storrier, F. Parients, Y. Wang, J.P. Shapleigh, H.D. Abru n˜ a, Anal.
Chem. 69 (1997) 4856.
12] M. Li, P. He, Y. Zhang, N. Hu, Biochim. Biophys. Acta 1749 (2005) 43.
13] Q.P. Chen, S.Y. Ai, X.B. Zhu, H.S. Yin, Q. Ma, Y.Y. Qiu, Biosens. Bioelectron. 24
3.9. Reproducibility and stability of the AuNPs/CLDH/GCE
[
[
The fabrication reproducibility of six electrodes, carried out
(
2009) 2991.
independently, showed an acceptable reproducibility for determin-
[
14] Q.P. Chen, S.Y. Ai, H. Fan, J. Cai, Q. Ma, X.B. Zhu, H.S. Yin, J. Solid State Electrochem.
14 (2010) 1681.
15] E. Shoji, M.S. Freund, J. Am. Chem. Soc. 123 (2001) 3383.
16] A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra,
Biosens. Bioelectron. 24 (2008) 676.
−
ing 1.0 mM NO2 with a relative standard deviation (R.S.D.) of 6.8%.
[
[
When not in use, the sensors were suspended in 0.1 M PBS in a
◦
refrigerator at 4 C. The operational and storage stability of the pro-
posed sensor was investigated by measuring the current response
[17] J. Xu, W. Li, Q. Yin, Y. Zhu, Electrochim. Acta 52 (2007) 3601.
[18] V. Dimakis, V. Gavalas, N. Chaniotakis, Anal. Chim. Acta 467 (2002) 217.
−
of 1.0 mM NO2 every 3 days for over 1 month. It was found that
[
19] L. Zhang, Biosens. Bioelectron. 23 (2008) 1610.
−
the peak current for NO2 oxidation retained 92% of its initial cur-
[
20] Z. Dai, S. Liu, H. Ju, Electrochim. Acta 49 (2004) 2139.
rent response, and no obvious potential shift was observed after
[21] J. Yu, H. Ju, Anal. Chem. 74 (2002) 3579.
[
22] J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Shen, Electrochem. Commun.
(2004) 66.
1
-month of storage. These results implied that the modified elec-
6
trode was stable.
[
[
[
[
23] X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo, Anal. Biochem. 363 (2007) 143.
24] L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Talanta 72 (2007) 819.
25] Z.H. Dai, S.H. Liu, J.C. Bao, H.X. Ju, Chem. Eur. J. 15 (2009) 4321.
26] Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, M.M.F. Choi, Analyst 133 (2008)
3.10. Determination of nitrite in real samples
1
26.
In order to evaluate the performance and feasibility of this
[
27] X.M. Miao, R. Yuan, Y.Q. Chai, Y.T. Shi, Y.Y. Yuan, J. Electroanal. Chem. 612 (2008)
157.
28] H. Wei, E. Wang, Anal. Chem. 80 (2008) 2250.
29] C.L. Li, Y. Su, S.W. Zhang, X.Y. Lv, H.L. Xia, Y.J. Wang, Biosens. Bioelectron. 26
method, three different ham samples were prepared using different
standard concentrations of nitrite, and each sample solution was
tested five times. This method, compared with the recommended
spectroscopic method and the results listed in Table 1, showed that
the R.S.D. for each sample was less than 5%, indicating that the
present sensor could be efficiently used for the determination of
nitrite in food samples.
[
[
(
2010) 903.
[30] W.Z. Jia, M. Guo, Z. Zheng, T. Yu, E.G. Rodriguez, Y. Wang, Y. Lei, J. Electroanal.
Chem. 625 (2009) 27.
[
31] C. Batchelor-McAuley, Y. Du, G.G. Wildgoose, R.G. Compton, Sens. Actuators B
35 (2008) 230.
1
[
[
32] S.T. Farrell, C.B. Breslin, Electrochim. Acta 49 (2004) 4497.
33] M. Cantú, E. López-Salinas, J.S. Valente, R. Montiel, Environ. Sci. Technol. 39
(
2005) 9715.
4
. Conclusions
[
[
34] W. Kagunya, Z. Hassan, W. Jones, Inorg. Chem. 35 (1996) 5970.
35] G.F. Santori, M.L. Lladó, G.J. Siri, M.L. Casella, O.A. Ferretti, Latin Am. Appl. Res.
30 (2000) 55.
[36] S.G. Christoskova, M. Stoyanova, M. Georgieva, Appl. Catal. A: Gen. 208 (2001)
243.
The AuNPs/CLDH modified electrode was prepared and it offers
−
−
a remarkable decrease in the overvoltage for NO2 oxidation.
This sensor was constructed successfully for NO2 determina-
tion, and it exhibited very good analytical performance with low
cost, convenient preparation and rapid detection. Furthermore, the
AuNPs/CLDH offers an opportunity to build up a more sensitive and
[
37] A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, Y. Cesteros, J.E. Sueiras, Appl.
Catal. B: Environ. 30 (2001) 195.
[38] L. Zhang, F. Li, D.G. Evans, X. Duan, Mater. Chem. Phys. 87 (2004) 402.
39] L. Cui, H.S. Yin, J. Dong, H. Fan, T. Liu, P. Ju, S.Y. Ai, Biosens. Bioelectron. 26 (2011)
278.
[
3
−
selective sensor for the detection of NO2 in real samples.
[40] H.H. Ai, X.T. Huang, Z.H. Zhu, J.P. Liu, Q.B. Chi, Y.Y. Li, L.K. Zi, X.X. Ji, Biosens.
Bioelectron. 24 (2008) 1048.
[
41] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Electrochem. Commun. 9
2007) 65.
Acknowledgements
(
[
[
42] E. Laviron, J. Electroanal. Chem. 101 (1979) 19.
43] R. Adams, Electrochemistry at Solid Electrodes, M. Dekker, New York, 1969.
This work was supported by the National Natural Science
Foundation of China (No. 201075078) and the Natural Science
[44] F. Anson, Anal. Chem. 36 (1964) 932.
[
[
[
[
[
[
45] R. Guidelli, F. Pergola, G. Raspi, Anal. Chem. 44 (1972) 745.
46] C. Yu, J. Guo, H. Gub, Electroanalysis 22 (2010) 1005.
47] L. Zhang, S. Dong, J. Electroanal. Chem. 568 (2004) 189.
48] M.G. Almeida, C.M. Silveira, J.J.G. Mour, Biosens. Bioelectron. 22 (2007) 2485.
49] J. Yu, J. Ma, F. Zhao, B. Zeng, Electrochim. Acta 53 (2007) 1995.
50] R. Ojani, J. Raoof, E. Zarei, Electrochim. Acta 52 (2006) 753.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.electacta.2011.08.026.
[51] T. Paixão, J. Cardoso, M. Bertotti, Talanta 71 (2007) 186.
52] A. Salimi, A. Noorbakhsh, M. Ghadermarzi, Sens. Actuators B 123 (2007) 530.
[