4572 J. Phys. Chem. A, Vol. 112, No. 20, 2008
Ma et al.
migrate into the beam, because these anions are consumed by
reduction in the beam and a concentration gradient may exist.
We also speculate that under high energy X-ray irradiation a
charge imbalance in the system may be created because the
generated electrons are more mobile than the ions. With this
argument, the X-ray illuminated volume should be charged more
positively than the nonilluminated volume. The complexes such
as AuCl4- will be driven towards the illuminated area through
the Columbic interaction and will thus accumulate. The gold
deposition on the Kapton windows is also believed to be related
to the X-ray induced charge effect.30
of the integrated fluorescence intensity is also given. This
information is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. ReV.
2005, 105, 1025.
(2) Nanoscale Materials in Chemistry, Klabunde, K. J., Ed.; John Wiley
& Sons: New York, 2001.
(3) Paclawski, K.; Fitzner, K. Metall. Mater. Trans. 2006, B37, 703.
(4) Skibsted, L. H. AdV. Inorg. Bioinor. Mech. 1986, 4, 137.
(5) Zhao, C.; Qu, S.; Zhu, C. J. Mater. Res. 2003, 18, 1710.
(6) (a) Eustis, S.; El-Sayed, M. A. J. Phys. Chem. 2006, B110, 14014.
(b) Eustis, S.; Hsu, H.-Y.; El-Sayed, M. A abid 2005, 109, 4811.
(7) Murphy, C. J.; Jana, N. R. AdV. Mater. 2002, 14, 80.
(8) Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Crroll, D. L.
J. Am. Chem. Soc. 2003, 125, 16186.
Conclusions
The X-ray induced gold reduction process is essentially
similar to those induced by UV light or γ-rays. The combination
of X-ray absorption spectroscopy and small angle X-ray
scattering has provided unprecedented details about chemical
and morphological changes in the solutions under irradiation.
It is a powerful approach for studies of liquid or colloidal
systems in real time. Prior to metal precipitation, the intermedi-
ate state, also observed by other techniques,4,9–11 is unambigu-
ously determined for the first time to be the reduction of Au3+
to Au1+, whose kinetics is strictly of the zeroth order. The
morphological changes occur simultaneously in the solutions,
that is, the gold complexes rearrange and aggregate, as
unequivocally observed by the correlated changes in the Au L3
emission and small angle scattering intensities. The experimental
evidence indicates that the eventual metal precipitation is
strongly influenced by the changing solution acidity under X-ray
irradiation.
(9) Bjerrum, N. Bull. Soc. Chim. Belges 1948, 57, 432.
(10) (a) Lingane, J. J. J. Electroanal. Chem. 1958, 19, 394. (b) Lingane,
J. J abid. 1962, 4, 332.
(11) Henglein, A. Langmuir 1999, 15, 6738.
(12) Gachard, E.; Remita, H.; Khatouri, J.; Keita, B.; Nadjo, L.; Belloni,
J. New J. Chem. 1998, 22, 1257.
(13) Pan, P.; Wood, S. A. Geochim. Cosmochim. Acta 1991, 26, 671.
(14) Murphy, P. J.; Stevens, G.; LaGrange, M. S. Geochi. Cosmochim.
Acta 2000, 64, 479.
(15) Baily, E. H.; Scofield, P. F.; Mosselmans, J. F. Proceedings of the
7th Annual V. M. Goldschmidt Conference, Lunar and Planetary Institute,
Houston, TX, 1997; Vol. 921; p 2264.
(16) Koutek, M. E.; Mason, W. R. Inorg. Chem. 1980, 19, 648.
(17) Kunkely, H.; Vogler, A. Inorg. Chem. 1992, 31, 4539.
(18) Sayers, D. E.; Stern, E. A.; Lytle, F. W. Phys. ReV. Lett. 1971, 27,
1204.
(19) Guinier, A.; Fournet, G. Small-Angle Scattering of X-rays; Wiley
& Sons: New York, 1955.
(20) Henglein, A. Langmuir, 1998, 14, 7393.
(21) Ghosh-Mazumdar, A. S.; Hart, E. J. AdV. Chem. Ser. 1968, 81,
193.
(22) Hart, E. J. Science 1964, 146, 19.
(23) Choy, J.-H.; Kim, Y.-I. J. Phys. Chem. 2003, B107, 3348.
(24) Berrodier, I.; Farges, F.; Benedetti, M.; Winterer, M.; Brown, M. G.,
Jr.; Deveughèle, M. Geochim. Cosmochim. Acta 2004, 68 (14), 3019.
(25) Brown, N. M. D.; McMonagle, J. B.; Greaves, G. N. J. Chem. Soc.,
Faraday Trans. I 1984, 80, 589.
Acknowledgment. DND-CAT is supported by E.I. DuPont
de Nemours & Co., The Dow Chemical Company, and State
of Illinois funding to Northwestern University. The Advanced
Photon Source and The Center for Nanoscale Materials at
Argonne National Laboratory are supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
(26) Ravel, B. The Consortium for Advanced Radiation Sources;http://
cars9.uchicago.edu/∼ravel/software/, 2005.
(27) Greegor, R. B.; Lytle, F. W. J. Catal. 1980, 63, 476.
(28) Wang, C.-H.; Hau, T.-E.; Chien, C.-C.; et al. Mater. Chem. Phys.
2007, 106, 323.
(29) Henglein, A. Langmuir 1998, 14, 7393.
(30) Ma, Q.; Moldovan, N.; Mancini, D. C.; Rosenberg, R. A. Appl.
Phys. Lett. 2000, 76, 2015.
Supporting Information Available: Two figures are pro-
vided that show the raw XANES spectra and the normalized
XANES spectra, as a function of time. The detailed description
JP7104852