S. Wang et al. / Chemical Physics Letters 463 (2008) 145–149
149
[4] W. Jiang, B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nature Nanotechnology 3 (2008)
145.
[5] A.P. Alivisatos, Nat. Biotechnol. 22 (2004) 47.
[6] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Nature 441 (2006) 441.
[7] J.M. Nam, C.S. Thaxton, C.A. Mirkin, Science 301 (2003) 301, 1884.
[8] X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, Nat. Biotechnol. 22 (2004)
969.
[9] G.K. Darbha, A.K. Singh, U.S. Rai, E. Yu, H. Yu, P.C. Ray, J. Am. Chem. Soc. 130
(2008) 8038.
is due to the presence of CTAB and replacing CTAB with biocompat-
ible and functionalization friendly stabilizing agents like PSS is
essential for the use of gold nanorod in living cells.
In conclusion, the cytotoxicity of gold nanomaterials of different
sizes and shapes is explored in this letter. Our data demonstrated
that spherical gold nanoparticles of different sizes are not inher-
ently toxic to human skin cells, but gold nanorods are highly toxic
due to the presence of CTAB as coating material. However, further
PSS coated gold nanorods coated with CTAB is not toxic. So coating
CTAB with biocompatible and functionalization friendly stabilizing
agents is essential for using of gold nanorods in living cells. Our re-
sult points out that it is difficult to understand the cytotoxicity of
gold nanomaterials individually, due to the presence of CTAB in
gold nanorod as well as aggregation of gold nanomaterial in the
presence of cell media.
[10] G.K. Darbha, U.S. Rai, A.K. Singh, P.C. Ray, Chem. Eur. J. 14 (2008) 3896.
[11] S.R. Dasary, U.S. Rai, H. Yu, Y. Anjaneyulu, M. Dubey, P.C. Ray, Chem. Phys. Lett.,
ASAP Article. 2008.
[12] P.C. Ray, Angew. Chem. 45 (2006) 1151.
[13] G.K. Darbha, A. Ray, P.C. Ray, ACS Nano. 1 (2007) 208.
[14] V.S. Tiwari, T. Oleg, G.K. Darbha, W. Hardy, J.P. Singh, P.C. Ray, Chem. Phys. Lett.
446 (2007) 77.
[15] T.L. Jennings, M.P. Singh, G.F.J. Strouse, Am. Chem. Soc. 128 (2006) 5462.
[16] P.C. Ray, A. Fortner, G.K. Darbha, J. Phys. Chem. B. 110 (2006) 20745.
[17] T.L. Jenning, J.C. Schlatterer, M.P. Singh, N.L. Greenbaum, G.F. Strouse, Nano
Lett. 6 (2006) 1318.
[18] D.S. Seferos, D.A. Giljohann, D.H. Hill, A.E. Progodich, C.A. Mirkin, J. Am, Chem.
Soc. 129 (2007) 15477.
[19] L.R. Skewis, M.B. Reinhard, Nano Lett. 8 (2008) 208.
[20] X. Huang, I.H. El-Sayed, W. Qian, M.A.J. El-Sayed, Am. Chem. Soc. 128 (2006)
2115.
[21] A.J. Bonham, G. Braun, I. Pavel, M. Moskovits, N.O. Reich, J. Am. Chem. Soc. 129
(2007) 14572.
[22] S. Lan, Y. Chenxu, I. Joseph, Ananl. Chem. 80 (2008) 3342.
[23] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Nano Lett. 7 (2007) 1591.
[24] G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Nano Lett. 7 (2007)
1947.
Acknowledgements
We wish to thank NSF-PREM grant # DMR-0611539, NSF-MRI
grant # 0421406 for their generous funding. We thank Sara H. Bay-
ley, MRSEC Instrumentation Facilities Coordinator, University of
Southern Mississippi for helping to acquire TEM data. We also
thank reviewers whose valuable suggestion improved the quality
of the manuscript.
[25] N. Lewinski, V. Colvin, R. Drezek, Small 4 (2008) 26.
[26] T.S. Haunk, A.A. Chazani, W.C.W. Chan, Small 4 (2008) 153.
[27] T.B. Huff, M.N. Hansen, Y. Zhao, Ji.-X. Cheng, A. Wei, Langmuir 23 (2007)
1596.
References
[28] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Small 1 (2005) 325.
[29] B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Nano Lett. 6 (2006) 662.
[30] H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada,
Langmuir 22 (2006) 2.
[1] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. Muller, Chem.
Rev. 108 (2008) 2064.
[2] N.L. Rosi, C.A. Mirkin, Chem. Rev. 105 (2005) 1547.
[3] A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Nature Mater. 7 (2008) 236.