6198
Q. Zhang et al. / Electrochimica Acta 54 (2009) 6190–6198
Considering this, it is reasonable to yield a moderately high diffu-
sivity of gold adatoms at 1.5 V in NaOH solutions, not only becaus−e
of the adsorption of OH− but owing to the lower solubility of AlO2
in alkali than Al3+ in acid.
[5] I. Milosev, M. Metikos-Hukovic, Electrochim. Acta 42 (1997) 1537.
[6] H.T. Liu P.H., Z.Y. Li, J.H. Li, Nanotechnology 17 (2006) 2167.
[7] V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, M. Baumer,
Angew. Chem. Int. Ed. 45 (2006) 8241.
[8] C.F. Yu, F.L. Jia, Z.H. Ai, L.Z. Zhang, Chem. Mater. 19 (2007) 6065.
[9] H.M. Yin, C.Q. Zhou, C.X. Xu, P.P. Liu, X.H. Xu, Y. Ding, J. Phys. Chem. C 112 (2008)
9673.
[10] K.C. Hu, D.X. Lan, X.M. Li, S.S. Zhang, Anal. Chem. 80 (2008) 9124.
[11] A. Mortari, A. Maaroof, D. Martin, M.B. Cortie, Sens. Actuators B 123 (2007)
262.
4. Conclusions
In summary, a facile, economical and benign route has been
developed to fabricate NPG ribbons through electrochemical deal-
loying of melt-spun Al–Au alloys with 20–50 at.% Au in a 10 wt.%
NaCl aqueous solution under potential control at room tempera-
ture. The microstructures of the NPG ribbons strongly depend upon
the phase constitutions of the starting Al–Au alloys. The Al–33.4 Au
and Al–50 Au alloys are composed of single-phase Al2Au and AlAu
intermetallic compound, respectively. Both Al2Au and AlAu can be
fully dealloyed, resulting in the formation of NPG with a homo-
geneous porous structure. The dealloying of the Al–20 Au alloy
comprising ␣-Al and Al2Au leads to the formation of NPG with
bimodal channel size distributions. In addition, the dealloying of
Al2Au and AlAu in the two-phase Al–45 Au alloy proceeds sepa-
rately, resulting in the formation of NPGCs. The applied potential
has no significant influence on the ligament-channel structure of
NPG by dealloying of the Al–33.4 Au alloy. In comparison to the low
potentials of 0.8 and 1.5 V, the ligament size markedly increases
and many micro-cracks appear in the NPG at the potential of 2.0 V.
Surface diffusion of Au adatoms along the alloy/electrolyte inter-
face plays an important role in the formation of ligaments/channels
in NPG during dealloying. The surface diffusivity of Au increases
with increasing applied potential and can be interpreted in terms
of interaction with adsorptive species. The dealloying mechanism
in the neutral NaCl solution can be explained based upon pour-
baix diagram and chloride ion effect. During the electrochemical
dealloying of the Al–Au alloys in the 10 wt.% NaCl solution, a self-
acidifying effect is triggered due to the dissolution and instant
hydrolysis of Al3+/Al, which is assisted by chloride ions in the elec-
trolyte. The self-acidifying effect accelerates the dealloying process
of the Al–Au alloys. In addition, the dissolution kinetics of Al at dif-
ferent potentials has some effects on the dealloying process of the
Al–Au alloys and the formation of NPG.
[12] F. Yu, S. Ahl, C. Anne-Marie, M. Jean-Pierre, W. Knoll, J. Erlebacher, Anal. Chem.
78 (2006) 7346.
[13] D. Kramer, R.N. Viswanath, J. Weissmuller, Nano Lett. 4 (2004) 793.
[14] M. Raney, Ind. Eng. Chem. 32 (1940) 1199.
[15] A.J. Smith, T. Tran, M.S. Wainwright, J. Appl. Electrochem. 29 (1999) 1085.
[16] Y.C.M.C. Zhao, Y.N. Zhang, T. Xu, W.M. Liu, Mater. Lett. 59 (2005) 40.
[17] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature (London) 410
(2001) 450.
[18] M. Stratmann, M. Rohwerder, Nature (London) 410 (2001) 420.
[19] J. Erlebacher, K. Sieradzki, Scripta Mater. 49 (2003) 991.
[20] J. Erlebacher, J. Electrochem. Soc. 151 (2004) C614.
[21] J. Snyder, K. Livi, J. Erlebacher, J. Electrochem. Soc. 155 (2008) C464.
[22] L. Sun, C.L. Chien, P.C. Searson, Chem. Mater. 16 (2004) 3125.
[23] D.V. Pugh, A. Dursun, S.G. Corcoran, J. Electrochem. Soc. 152 (2005) 455.
[24] R.C. Newman, S.G. Corcoran, J. Erlebacher, M.J. Aziz, K. Sieradzki, MRS Bull. 24
(1999) 24.
[25] J.C. Thorp, K. Sieradzki, L. Tang, P.A. Crozier, A. Misra, M. Nastasi, D. Mitlin, S.T.
Picraux, Appl. Phys. Lett. 88 (2006) 033110.
[26] J. Jayaraj, B.J. Park, D.H. Kim, W.T. Kim, E. Fleurya, Scripta Mater. 55 (2006)
1063.
[27] J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen, Chem. Mater. 20 (2008)
4548.
[28] S. Kameoka, A.P. Tsai, Catal. Lett. 121 (2008) 337.
[29] Z.H. Zhang, Y. Wang, Z. Qi, J.K. Lin, X.F. Bian, J. Phys. Chem. C 113 (2009) 1308.
[30] A. Dursun, D.V. Pugh, S.G. Corcoran, J. Electrochem. Soc. 152 (2005) B65.
[31] H.B. Lu, Y. Li, F.H. Wang, Scripta Mater. 56 (2007) 165.
[32] N. Dimitrov, J.A. Mann, M. Vukmirovic, K. Sieradzki, J. Electrochem. Soc. 147
(2000) 3283.
[33] F.L. Jia, C.F. Yu, Z.H. Ai, L.Z. Zhang, Chem. Mater. 19 (2007) 3648.
[34] Y.W. Lin, C.C. Tai, I.W. Sun, J. Electrochem. Soc. 154 (2007) D316.
[35] J.L. Murray, H. Okamoto, T.B. Massalski, Bull. Alloy Phase Diagrams 8 (1987) 20.
[36] J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K.J. Sieradzki, J. Mater. Res. 21
(2006) 2611.
[37] J.R. Greer, W.C. Oliver, W.D. Nix, Acta Mater. 53 (2005) (1821).
[38] S. Parida, D. Kramer, C.A. Volkert, H. Rosner, J. Erlebacher, J. Weissmuller. Phys.
Rev. Lett. 97 (2006) 035504.
[39] M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara, Lang-
muir 23 (2007) 2414.
[40] Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125 (2003) 7772.
[41] A. Majumdar, B.C. Muddle, Mater. Sci. Eng. A 169 (1993) 135.
[42] A. Dursun, D.V. Pugh, S.G. Corcoran, J. Electrochem. Soc. 150 (2003) B355.
[43] F.U. Renner, A. Stierle, H. Dosch, D.M. Kolb, J. Zegenhagen, Electrochem. Com-
mun. 9 (2007) 1639.
Acknowledgements
[44] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Perga-
mon Press, Oxford, 1966.
[45] G. Andreasen, M. Nazzarro, J. Ramirez, R.C. Salvarezza, A.J. Arvia, J. Electrochem.
Soc. 143 (1996) 466.
The authors gratefully acknowledge financial support by the
National Natural Science Foundation of China (50701028 and
50831003) and Excellent Middle-age and Young Scientists Research
Award Foundation of Shandong Province (2007BS04024).
[46] J.M. Dona, J. Gonzalez-Velasco, Surf. Sci. 274 (1992) 205.
[47] J.M. Dona, J. Gonzalez-Velasco, J. Phys. Chem. 97 (1993) 4714.
[48] X.Z. Yang, W. Yang, Electrochemical Thermodynamics for Metallic Corrosion:
Potential–pH Diagram and its Application, 1st ed., Chemical Industry Press,
1991.
[49] T. Hagyar, J. Williams, Trans. Faraday Soc. 57 (1961) 2288.
[50] Z. Szklarska-Smialowska, Corros. Sci. 41 (1999) 1743.
[51] K.P. Wong, R.C. Alkire, J. Electrochem. Soc. 137 (1990) 3010.
[52] R. Foley, N. Nguyen, J. Electrochem. Soc. 129 (1982) 464.
[53] G.S. Frankel, R.C. Newman, C.V. Jahnes, M.A. Russak, J. Electrochem. Soc. 140
(1993) 2192.
References
[1] D.E. Williams, R.C. Newman, Q. Song, R.G. Kelly, Nature (London) 350 (1991)
216.
[2] H.W. Pickering, Corros. Sci. 23 (1983) 1107.
[3] S.S.A. Rehim, H.H. Hassan, M.A. Amin, Corros. Sci. 46 (2004) 1921.
[4] A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, G. Cerisola, Corros. Sci. 41 (1999)
463.
[54] M. Hidalgo, M.L. Marcos, J.G. Velasco, Appl. Phys. Lett. 67 (1995) 4.
[55] M.M. Lohrengel, Mater. Sci. Eng. R 11 (1993) 243.