Communication
RSC Advances
2
(CH ) SO % (CH ) S + (CH ) SO
(4) 13 G. S. P. Garusinghe, S. M. Bessey, M. Aghamoosa,
M. McKinnon, A. E. Bruce and M. R. M. Bruce, Inorganics,
2015, 3, 40–54.
3
2
3 2
3 2
2
Disproportionation. The presence of DMS in a variety of
samples of DMSO led us to consider the possibility that 14 A. Chandrasoma, A. E. Bruce and M. R. M. Bruce, Solvent
disproportionation of DMSO might be contributing to the
Dielectric Effect on Metal Assisted Thiolate-Disulde
Exchange: No Free Thiolate, American Chemical Society,
2010, p. INOR-494.
source of DMS (eqn (4)). Disproportionation of DMSO is cata-
28
lyzed by UV light, and occurs at elevated temperatures for
ꢁ
29
extended periods of time (>150 C for 24 h). Using National 15 M. Aghamoosa, G. S. Garusinghe, A. E. Bruce and
Bureau of Standards thermodynamic parameters, Wood esti-
M. R. M. Bruce, Effect of Solvent on the Rate of Gold(I)-
Assisted Thiolate-Disulde Exchange, American Chemical
Society, 2010, p. INOR-414.
ꢁ
mated that the disproportionation of DMSO is favorable (DG ¼
ꢂ1 30
ꢂ98 kJ mol ). Ab initio calculations using B3LYP/6-31G*
31
theory and basis set in Gaussian 09, also indicate a similar 16 G. S. Garusinghe, A. E. Bruce and M. R. M. Bruce, Solvent
ꢁ
ꢂ1
nding, i.e. DG ¼ ꢂ57 kJ mol in the gas phase (3 ¼ 0) and
Effects on Metal-Assisted Thiolate-Disulde Exchange (M ¼
ꢁ
ꢂ1
DG ¼ ꢂ58 kJ mol in DMSO (3 ¼ 46.83). While calculations
Zn, Au), American Chemical Society, 2010, p. INOR-171.
indicate that disproportionation of DMSO is thermodynami- 17 G. S. Garusinghe, M. R. M. Bruce and A. E. Bruce, Comparing
cally favorable, the relatively low concentration of DMS in a
variety of samples of DMSO suggests that it is not kinetically
Metal Assisted Thiolate Disulde Exchange Reactions (M ¼ Au,
Zn), American Chemical Society, 2010, p. INOR-676.
favorable. The presence of DMS may be a consequence of the 18 S. M. Bessey, M. Aghamoosa, G. S. P. Garusinghe,
DMSO manufacturing process. However a longer-term study to
monitor the shelf life of DMSO may be needed to shed light on
the issue of disproportionation.
A. Chandrasoma, A. E. Bruce and M. R. M. Bruce, Inorg.
Chim. Acta, 2010, 363, 279–282.
19 H. J. Kim, J. H. Yoon and S. Yoon, J. Phys. Chem. A, 2010, 114,
12010–12015.
2
2
2
2
0 M. Hirano, S. Yakabe, H. Monobe and T. Morimoto, J. Chem.
Res., Synop., 1998, 472–473.
1 F. G. Bordwell and D. L. Hughes, J. Org. Chem., 1982, 47,
Conclusions
The GC-MS analysis shows that samples of research grade
DMSO from a variety of commercial suppliers contain trace
amounts of DMS. UV-vis studies in solutions of bis(4-
nitrophenyl)disulde are consistent with the presence of DMS
in DMSO samples. The average concentration of DMS (0.48 ꢀ
3224–3232.
2 W. L. F. Armarego and D. D. Perrin, Purication of Laboratory
Chemicals, Fourth Edition, Pergamon, 1997.
3 A. J. Gordon and R. A. Ford, A Chemist's Companion. A
Handbook of Practical Data, Techniques, and References,
Wiley-Interscience, 1972.
0.14 mM) found in DMSO is potentially problematic for reac-
tants that are susceptible to reaction with DMS and are present
at mM-mM concentrations. Standard methods of purication of
DMSO were unsuccessful, in our hands, in removing all traces
of DMS.
24 I. Radoi and G. Mara, Bul. Stiint. Teh. Inst. Politeh. Traian
Vuia Timisoara, Ser. Chim., 1984, 29, 59–64.
2
2
5 G. Mara, M. Nemes and I. Radoi, Rev. Chim., 1987, 38, 408–411.
6 A. V. Bukhtiarov, A. V. Lebedev, A. P. Tomilov and
O. V. Kuz'min, Zh. Obshch. Khim., 1988, 58, 2718–2724.
7 Addition of bis(4-nitrophenyl)disulde to a DMSO solution
2
Notes and references
6
containing 0.1 M TBAPF , prior to electrolysis, generates
1
2
3
C. Reichardt, Solvents and Solvent Effects in Organic
Chemistry, Wiley-VCH, 2008.
D. Martin, A. Weise and H. J. Niclas, Angew. Chem., Int. Ed. 28 G. R. Harvey and R. F. Lang, Geophys. Res. Lett., 1986, 13, 49–51.
Engl., 1967, 6, 318–334.
T. Clark, J. S. Murray, P. Lane and P. Politzer, J. Mol. Model.,
the pink color, i.e. excess electrolyte does not suppress
formation of thiolate.
29 Gaylord Chemical, Technical Bulletin Reaction Solvent Dimethyl
Sulfoxide (105B DMSO), http://www.gaylordchemical.com/
uploads/images/pdfs/literature/105B.pdf, accessed 3/10/2015.
30 P. M. Wood, FEBS Lett., 1981, 124, 11–14.
2008, 14, 689–697.
4
5
Y. Marcus, The Properties of Solvents, Wiley, 1998.
Y. C. Song and D. E. Pegg, Tissue and Cell Processing; an 31 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
Essential Guide, Wiley-Blackwell, 2012.
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
6
7
A. McKim and G. Kvakovsky, Spec. Chem. Mag., 2009, 29, 50–52.
J. Iglesias, J. A. Melero, M. Paniagua, M. Teresa Andreola and
E. Barragan, Biomass Bioenergy, 2014, 62, 158–165.
J. Atcher and I. Alfonso, RSC Adv., 2013, 3, 25605–25608.
T. Diao, P. White, I. Guzei and S. S. Stahl, Inorg. Chem., 2012,
8
9
5
1, 11898–11909.
0 W. Zierkiewicz and T. Privalov, Organometallics, 2005, 24,
019–6028.
1
6
1
1
1 W. W. Epstein and F. W. Sweat, Chem. Rev., 1967, 67, 247–260.
2 W. Ge, X. Zhu and Y. Wei, RSC Adv., 2013, 3, 10817–10822.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 40603–40606 | 40605