R
SYNTHETIC COMMUNICATIONSV
13
References
ꢀ
[1] Guillon, J.; Petit, C.; Toutain, B.; Guette, C.; Lelievre, E.; Coqueret, O. Chemotherapy-
Induced Senescence, an Adaptive Mechanism Driving Resistance and Tumor
[2] Meads, M. B.; Gatenby, R.; Dalton, W. S. Environment-Mediated Drug Resistance: A
Major Contributor to Minimal Residual Disease. Nat. Rev. Cancer 2009, 9, 665–674. DOI:
[3] Meads, M. B.; Hazlehurst, L. A.; Dalton, W. S. The Bone Marrow Microenvironment as a
Tumor Sanctuary and Contributor to Drug Resistance. Clin. Cancer Res. 2008, 14,
[4] Lim, A. B. M.; Curley, C.; Fong, C. Y.; Bilmon, I.; Beligaswatte, A.; Purtill, D.; Getta, B.;
Johnston, A. M.; Armytage, T.; Collins, M.; et al. Acute Myeloid Leukaemia Relapsing
after Allogeneic Haemopoietic Stem Cell Transplantation: Prognostic Factors and Impact
of Initial Therapy of Relapse. Intern. Med. J. 2018, 48, 276–285. DOI: 10.1111/imj.13522.
[5] Shain, K. H.; Dalton, W. S. Environmental-Mediated Drug Resistance: A Target for
Multiple Myeloma Therapy. Expert Rev. Hematol. 2009, 2, 649–662. DOI: 10.1586/ehm.09.
[6] Damiano, J. S.; Cress, A. E.; Hazlehurst, L. A.; Shtil, A. A.; Dalton, W. S. Cell Adhesion
Mediated Drug Resistance (CAM-DR): Role of Integrins and Resistance to Apoptosis in
[7] Doherty, G. A.; Yang, G. X.; Borges, E.; Tong, S.; McCauley, E. D.; Treonz, K. M.; Van
Riper, G.; Pacholok, S.; Si, Q.; Koo, G. C.; et al. N-Isonicotinoyl-(L)-4-
Aminophenylalanine Derivatives as Tight Binding VLA-4 Antagonists. Bioorg. Med. Chem.
[8] Chigaev, A.; Wu, Y.; Williams, D. B.; Smagley, Y.; Sklar, L. a. Discovery of Very Late
Antigen-4 (VLA-4, alpha4beta1 Integrin) Allosteric Antagonists. J. Biol. Chem. 2011, 286,
[9] Spengler, G.; Molnar, J.; Viveiros, M.; Amaral, L. Thioridazine Induces Apoptosis of
Multidrug-Resistant Mouse Lymphoma Cells Transfected with the Human ABCB1 and
Inhibits the Expression of P-Glycoprotein. Anticancer Res. 2011, 31, 4201–4205.
[10] Kang, S.; Dong, S. M.; Kim, B. R.; Park, M. S.; Trink, B.; Byun, H. J.; Rho, S. B.
Thioridazine Induces Apoptosis by Targeting the PI3K/Akt/mTOR Pathway in Cervical
~
[11] Sachlos, E.; Risueno, R. M.; Laronde, S.; Shapovalova, Z.; Lee, J. H.; Russell, J.; Malig, M.;
McNicol, J. D.; Fiebig-Comyn, A.; Graham, M.; et al. Identification of Drugs Including a
Dopamine Receptor Antagonist that Selectively Target Cancer Stem Cells. Cell 2012, 149,
[12] Bonig, H.; Wundes, A.; Chang, K. H.; Lucas, S.; Papayannopoulou, T. Increased Numbers
of Circulating Hematopoietic Stem/Progenitor Cells Are Chronically Maintained in
Patients Treated with the CD49d Blocking Antibody Natalizumab. Blood 2008, 111,
€
[13] Zohren, F.; Toutzaris, D.; Klarner, V.; Hartung, H. P.; Kieseier, B.; Haas, R. The
Monoclonal anti-VLA-4 Antibody Natalizumab Mobilizes CD34þ Hematopoietic
[14] Lapidot, T.; Petit, I. Current Understanding of Stem Cell Mobilization: The Roles of
Chemokines, Proteolytic Enzymes, Adhesion Molecules, Cytokines, and Stromal Cells.
[15] Lin, L. S.; Lanza, T.; Jewell, J. P.; Liu, P.; Jones, C.; Kieczykowski, G. R.; Treonze, K.; Si,
Q.; Manior, S.; Koo, G.; et al. Discovery of N-fN-[(3-Cyanophenyl)Sulfonyl]-4(R)-
Cyclobutylamino-(L)-Prolylg-4-[(30,50-Dichloroisonicotinoyl)
Amino]-(L)-Phenylalanine