16560 J. Phys. Chem., Vol. 100, No. 41, 1996
Bouchoux and Salpin
(10) (a) Bartmess, J. E.; Georgiadis, R. M. Vacuum 1983, 33, 149. (b)
Miller, K. J. J. Am. Chem. Soc. 1990, 112, 8533.
(11) Su, T.; Bowers, M. T. In Gas Phase Ion Chemistry; Bowers, M.
T., Ed.; Academic Press: New York, 1979; Vol. 1, Chapter 3.
(12) Ausloos, P.; Lias, S. G. Chem. Phys. Lett. 1977, 51, 53.
(13) Vogt, J.; Williamson, D.; Beauchamp, J. L. J. Am. Chem. Soc. 1978,
100, 3478.
(14) Davidson, W. R.; Lau, Y. K.; Kebarle, P. Can. J. Chem. 1978, 56,
The determination of the heat of formation of formaldimine,
CH2dNH, is still an actual question; the various estimates span
a wide range of values (69-135 kJ/mol) with seemingly a recent
consensus offered by a theoretical estimate of 86 ( 10
kJ/mol 24,25 and an experimental determination of 88 ( 8 kJ/
mol 26 based on the appearance energy measurement. Our PA-
(CH2dNH) determination, combined with the well-established
heat of formation of immonium ion, ∆Hf°300[CH2NH2]+ ) 745
kJ/mol,27 allows us to propose a heat of formation of formaldi-
mine of ∆Hf°300 (CH2dNH) ) 75 ( 5 kJ/mol. Owing to the
experimental and theoretical uncertainties, the agreement be-
tween this value and the two previously recalled most recent
estimates is excellent.
1016.
(15) Debrou, G. B.; Fulford, J. E.; Lewars, E. G.; March, R. E. Int. J.
Mass Spectrom. Ion Processes 1978, 26, 353.
(16) Traeger, J. C.; McLoughlin, R. G.; Nicholson, A. J. C. J. Am. Chem.
Soc. 1982, 104, 5318.
(17) Smith, B. J.; Radom, L. Int. J. Mass Spectrom. Ion Processes 1990,
101, 209.
(18) Nuttall, R. L.; Laufer, A. H.; Kilday, M. V. J. Chem. Thermodyn.
1971, 31, 167.
Conclusion
(19) Armitage, M. A.; Higgins, M. J.; Lewars, E. G.; March, R. E. J.
Am. Chem. Soc. 1980, 102, 5064.
The recently developed thermokinetic method7 has been
applied to the determination of gas-phase basicities and proton
affinities of three important neutral molecules: ketene, meth-
ylketene, and formaldimine. The method gives results with an
accuracy of (3 to (5 kJ/mol and in excellent agreement with
data obtained from the measurement of the equilibrium constant
of proton transfer reaction. Moreover, the method proves to
be useful when the neutrals are unstable or reactive species.
From a combination of the above results and literature data
we derive the following heat of formation values of neutral
methylketene and formaldimine: ∆Hf°300(CH3CHCO) ) -97
( 5 kJ/mol and ∆Hf°300(CH2dNH) ) 75 ( 5 kJ/mol.
(20) Traeger, J. C. Org. Mass Spectrom. 1985, 20, 223.
(21) McKee, M. L.; Radom, L. Org. Mass Spectrom. 1993, 28, 1238.
(22) Deming, R. L.; Wulff, C. A. In The chemistry of ketenes, allenes
and related compounds, Part 1; S. Pataˆı, S., Ed.; Wiley: Chichester, U. K.,
1980; p 155.
(23) Peerboom, J. A.; Ingemann, S.; Nibbering, N. M. M.; Liebman, J.
J. Chem. Soc., Perkin Trans 2 1990, 1825.
(24) Smith, B. J.; Pople, J. A.; Curtiss, L. A.; Radom, L. Aust. J. Chem.
1992, 45, 285.
(25) Wiberg, K. B.; Nakaji, D. J. Am. Chem. Soc. 1993, 115, 10658.
(26) Holmes, J. L.; Lossing, F. P.; Mayer, P. M. Chem. Phys. Lett. 1992,
198, 211.
(27) (a) Lossing, F. P.; Lam, Y. T.; Macoll, A. Can. J. Chem. 1981, 59,
2228. (b) Bouchoux, G.; Alcaraz, C.; Dutuit, O. Unpublished results from
photoionization experiments.
(28) Nobes, R. H.; Radom, L. Org. Mass Spectrom. 1986, 21, 407.
(29) Bouchoux, G.; Flament, J. P.; Hoppilliard, Y. NouV. J. Chim. 1983,
7, 385.
(30) It is established that the loss of an ethyl radical from ionized
diethylketone leads exclusively to propanoyl cation in the source of the
mass spectrometer; see, for example: Bouchoux, G. Mass Spectrom. ReV.
1988, 7, 203.
(31) Traeger, J. C.; Hudson, C. E.; McAdoo, D. J. Org. Mass Spectrom.
1989, 24, 230.
References and Notes
(1) (a) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref.
Data 1984, 13, 695. (b) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes,
J. H.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17,
Suppl. 1.
(2) Bartmess, J. E. Mass Spectrom. ReV. 1989, 8, 297.
(3) Szulejko, J. E.; McMahon, T. B. J. Am. Chem. Soc. 1993, 115,
7839.
(4) Koppel, I. A.; Anvia, F.; Taft, R. W. J. Phys. Org. Chem. 1994, 7,
717.
(32) Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1992, 114, 36.
(33) Clellan, A. C.; Freeman, W. H. Table of Experimental Dipole
Moments; Freeman: San Francisco, CA, 1963; Vol. 1; Rahara Ent.: El
Cerrito, CA, 1973; Vol. 2.
(34) Bouchoux, G.; Drancourt, D.; Leblanc, D.; Yanez, M.; Mo, O. New
J. Chem. 1995, 19, 1243.
(35) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.
Am. Chem. Soc. 1992, 107, 3902.
(36) Traeger, J. C. Rapid Commun. Mass Spectrom. 1996, 10, 119.
(5) McLuckey, S. A.; Cameron, D.; Cooks, R. G. J. Am. Chem. Soc.
1981, 103, 1313. (b) Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey,
S. A. Mass Spectrom. ReV. 1994, 13, 287.
(6) Gorman, G. S.; Amster, I. J. Org. Mass Spectrom. 1991, 26, 227.
(7) Bouchoux, G.; Salpin, J. Y.; Leblanc, D. Int. J. Mass Spectrom.
Ion Processes 1996, 153, 37.
(8) Kofel, P.; Alleman, M.; Kelerhals, H. P.; Wanczek, K. P. Int. J.
Mass Spectrom. Ion Processes 1985, 65, 97.
(9) Harrison, A. G. Chemical Ionization Mass Spectrometry, 2nd ed.;
CRC Press: Boca Raton, FL, 1994.
JP960761H