Organic Letters
Letter
elimination occurs with A to produce an enamine intermediate
B.7a Next, nitrosation of B by TBN affords intermediate C.12a
In the presence of BF3, the isomerization of C occurs to deliver
charge-separated intermediate D,12b which then undergoes an
intramolecular nucleophilic attack to form E. Then N−O and
C−C bond cleavage of E occur to furnish product 2a.12
As for the formation of 3a, it should also involve an initial in
situ formation of enamine B. Then EtO• generated from the
reaction medium undergoes a radical addition on B to provide
intermediate F.4l,13 The following oxidation of F produces an
iminium intermediate G. Then hydrolysis and C−N bond
cleavage of G take place to afford acyclic intermediate H,4l
which subsequently captures an NO or NO radical to form
intermediate I.14a Next, with the aid of tBuO•, decarbonylation
of I occurs to give radical intermediate J,14b which is
hydrolyzed and/or oxidized into product 3a (Scheme 6).9c
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedure, characterization data, and
NMR spectra of all products (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
Scheme 6. Proposed Mechanism Accounting for the
Formation of 3a
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (21702050, 21572047), Plan for Scientific Innovation
Talents of Henan Province (184200510012), and 111 Project
(D17007) for financial support.
REFERENCES
■
(1) (a) Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692.
(b) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (c) Wu,
X.; Zhu, C. Chin. J. Chem. 2019, 37, 171. (d) Kim, D.-S.; Park, W.-J.;
Jun, C.-H. Chem. Rev. 2017, 117, 8977. (e) Fumagalli, G.; Stanton, S.;
Bower, J. F. Chem. Rev. 2017, 117, 9404. (f) Guengerich, F. P.;
Yoshimoto, F. K. Chem. Rev. 2018, 118, 6573. (g) Xia, Y.; Wang, J.;
Dong, G. Angew. Chem., Int. Ed. 2017, 56, 2376. (h) Shen, T.; Zhu, B.;
Lin, F.; Pan, J.; Wei, J.; Luo, X.; Liu, J.; Jiao, N. Chin. J. Chem. 2018,
36, 815. (i) Zhao, B.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z. Chin. J.
Chem. 2018, 36, 995.
Finally, the synthetic applications of the products obtained
above were explored. It was thus found that the nitroso group
in 3a could be conveniently reduced to an amine unit by
subjecting it to zinc and NH4Cl in THF/water to give 4
(Scheme 7, (1)). Treatment of 4 with TFA in refluxing 1,4-
Scheme 7. Synthesis of 4 and 5 from 3a
(2) (a) Desnoyer, A. N.; Love, J. A. Chem. Soc. Rev. 2017, 46, 197.
(b) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev.
2018, 47, 7899.
(3) (a) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J.
Am. Chem. Soc. 2012, 134, 14694. (b) Shi, R.; Lu, L.; Zhang, H.;
Chen, B.; Sha, Y.; Liu, C.; Lei, A. Angew. Chem., Int. Ed. 2013, 52,
10582. (c) Xie, Y.; Hu, J.; Xie, P.; Qian, B.; Huang, H. J. Am. Chem.
Soc. 2013, 135, 18327. (d) Hu, J.; Xie, Y.; Huang, H. Angew. Chem.,
Int. Ed. 2014, 53, 7272. (e) Qin, G.; Li, L.; Li, J.; Huang, H. J. Am.
Chem. Soc. 2015, 137, 12490. (f) Liu, Y.; Xie, Y.; Wang, H.; Huang, H.
J. Am. Chem. Soc. 2016, 138, 4314. (g) Li, L.; Liu, P.; Su, Y.; Huang,
H. Org. Lett. 2016, 18, 5736. (h) Yu, H.; Gao, B.; Hu, B.; Huang, H.
Org. Lett. 2017, 19, 3520. (i) Gao, B.; Huang, H. Org. Lett. 2017, 19,
6260. (j) Li, X.; Pan, J.; Wu, H.; Jiao, N. Chem. Sci. 2017, 8, 6266.
(k) Liu, P.; Zou, S.; Yu, B.; Li, L.; Huang, H. Org. Lett. 2018, 20,
3601. (l) Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett.
2019, 21, 535.
(4) (a) Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Chem. Rev. 2015,
115, 12045. (b) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc. Rev.
2016, 45, 1257. (c) Cocquet, G.; Ferroud, C.; Guy, A. Tetrahedron
2000, 56, 2975. (d) Ito, R.; Umezawa, N.; Higuchi, T. J. Am. Chem.
Soc. 2005, 127, 834. (e) Yu, C.; Shoaib, M. A.; Iqbal, N.; Kim, J. S.;
Ha, H.-J.; Cho, E. J. Org. Chem. 2017, 82, 6615. (f) Kaname, M.;
Yoshifuji, S.; Sashida, H. Tetrahedron Lett. 2008, 49, 2786.
(g) Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.;
White, M. C. Nature 2016, 537, 214. (h) Wang, S.; An, X.-D.; Li, S.-
S.; Liu, X.; Liu, Q.; Xiao, J. Chem. Commun. 2018, 54, 13833.
dioxane afforded pyrrolidone 5 in an excellent yield of 81%
(Scheme 7, (2)). This is a synthetically interesting trans-
formation as pyrolidone derivatives are known to play
important roles in biological and pharmaceutical fields.15
In conclusion, we have established some efficient methods to
realize selective cleavage and tunable functionalization of the
C−C/C−N bonds in unstrained cyclic amines by using
inexpensive T+BF4− as a mild oxidant and easily available TBN
as a sustainable nitrogen source. From these reactions, the
synthetically useful acyclic N-formyl nitriles and N-nitroso
chain esters were conveniently prepared. In general, these
novel no-metal-catalyzed transformations, which were accom-
plished under mild conditions and showed good tolerance
toward a variety of functional groups, are excellent comple-
ments to previously reported synthetic strategies. Further
exploitation on the detailed mechanism is currently underway
in our laboratory.
D
Org. Lett. XXXX, XXX, XXX−XXX