104
Khalil Faghihi et al.
Table 1. Thermal behaviors and water uptake of neat PAI (5) and PAI-nanocomposite films 5a and 5b.
a
o
( C)
o
b
c
d
Sample
T
5
T
10 ( C)
Char Yield
50.0
Water uptake (%)
5
144
160
179
174
198
220
4.17
1.81
5a
51.3
5b
55.7
0.22
o
a,b
Temperature at which 5% and 10% weight loss was recorded by TGA at heating rate of 10 C/min in N
.
respectively Percentage weight of material left undecomposed after TGA analysis 800 C.
2
,
d
o
CONCLUSION
The PAI-nanocomposites were successfully prepared using solution intercalation method. The
structure and the uniform dispersion of organoclay throughout the PAI matrix were confirmed
by FT-IR, XRD and SEM analyses. The optical clarity and water absorption property of PAI-
nanocomposites were decreased significantly with increasing the organoclay contents in PAI
matrix. On the contrary the thermal stability of PAI-nanocomposites were increased
significantly with increasing the organoclay contents in PAI matrix. The enhancements in the
thermal stability of the nanocomposites films 5a and 5b by introducing organoclay may be due
to the strong interactions between polymeric matrix and organoclay, as well as intercalation and
dispersion of clay platelets in the PAI matrix.
REFERENCES
1
2
. Giannelis, E.P. Adv. Mater. 1996, 8, 29.
. Yano, Y.; Usuki, A.; Kurauchi, T.; Kamingato, O. J. Polym. Sci. Part A: Polym. Chem.
993, 31, 2493.
. Zulfiqar, S.; Ahmad, Z.; Ishhagh, M.; Saeed, S.; Sarwar, M.I. J. Mater. Sci. 2007, 42,
3.
. Sikka, M.; Cerini, L.N.; Ghosh, S.S.; Wieny, K.I. J. Polym. Sci. Part B: Polym. Phys.
996, 34, 1443.
. Xu, R.; Manias, E.; Snyder, A. J.; Runt, J. Macromolecules 2001, 34, 337.
. Kausar, A.; Zulfiqar, S.; Shabbir, S.; Ishagh, M.; Sarwar, M.I. Polym. Bull. 2007, 59,
57.
1
3
4
9
1
5
6
4
7
8
9
. Bibi, N.; Sarwar, M.I.; Ishagh, M.; Ahmad, Z. Polym. Polym. Compos. 2007, 15, 313.
. Zulfiqar, S.; Sarwar, M. I. Scr. Mater. 2008, 59, 436.
. Fornes, T.D.; Yoon, P.J.; Hunter, D.L.; Keskkula, H.; Paul, D.R. Polymer 2002, 43,
5
915.
0. Chen, G.M.; Ma, Y.M.; Qi, Z.N. J. Appl. Polym. Sci. 2000, 77, 2201.
1. Yano, Y.; Usukia, A.; Kurauchi, T.; Kamigato, O. J. Polym. Sci. Part A: Polym. Chem.
993, 31, 2493.
1
1
1
1
2. Ghosh, M. K.; Mittal, K.L. Polyimide: Fundamental and Applications, Dekker: New
York; 1996.
3. Liaw, D.J.; Liaw, B.Y.; Polymer 2001, 42, 839.
4. Zhang, Q.; Li, S.; Li, W.; Zhang, S. Polymer 2007, 48, 6246.
5. Zhang, Q.; Chen, S. Polymer 2007, 48, 2250.
6. Saxena, A.; Rao, V.L.; Prabhakaran, P.V.; Nianan, K.N. Eur. Polym. J. 2003, 39, 401.
7. Yang, C.P.; Chen, Y.P.; Woo, E.M. Polymer 2004, 45, 5279.
8. Liaw, D.J.; Chen, W.H. Polym. Degrad. Stab. 2006, 91, 1731.
9. Mallakpour, S.; Kolahdoozan, M. J. Appl. Polym. Sci. 2007, 104, 1248.
0. Faghihi, Kh.; Naghavi, H. J. Appl. Polym. Sci. 2005, 96, 1776.
1. Faghihi, Kh.; Mozafari, Z. Turk. J. Chem. 2008, 32, 673.
2. Mallakpour, S.; Hajipour, A.R.; Habibi, S. J. Appl. Polym. Sci. 2001, 80, 1312.
3. Zulfiqar, S.; Sarwar, M.I. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 353.
4. Krishnan, P.S.G.; Wisanto, A.E.; Osiyemi, S.; Ling, C. Polym. Inter. 2007, 56, 787.
5. Bharadwaj, R.K. Macromolecules 2001, 34, 9189.
1
1
1
1
1
1
1
2
2
2
2
2
2
Bull. Chem. Soc. Ethiop. 2013, 27(1)